Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

A quantum active learning algorithm for sampling against adversarial attacks

dc.contributor.authorMoreno Casares, Pablo Antonio
dc.contributor.authorMartín-Delgado Alcántara, Miguel Ángel
dc.date.accessioned2023-06-17T08:56:47Z
dc.date.available2023-06-17T08:56:47Z
dc.date.issued2020-07
dc.description© 2020 The Author(s). We would like to thank Santiago Varona for useful comments on the manuscript, as well to Jaime Sevilla, Nikolas Bernaola and Javier Prieto for pointing us to useful statistic results for appendix C. We acknowledge financial support from the Spanish MINECO grants MINECO/FEDER Projects FIS 2017-91460-EXP, PGC2018-099169-B-I00 FIS-2018 and from CAM/FEDER Project No. S2018/TCS-4342 (QUITEMAD-CM). The research of MAM-D has been partially supported by the US Army Research Office through Grant No.W911NF-14-1-0103. PAMC thanks the support of an FPU MECD Grant.
dc.description.abstractAdversarial attacks represent a serious menace for learning algorithms and may compromise the security of future autonomous systems. A theorem by Khoury and Hadfield-Menell (KH), provides sufficient conditions to guarantee the robustness of active learning algorithms, but comes with a caveat: it is crucial to know the smallest distance among the classes of the corresponding classification problem. We propose a theoretical framework that allows us to think of active learning as sampling the most promising new points to be classified, so that the minimum distance between classes can be found and the theorem KH used. Additionally, we introduce a quantum active learning algorithm that makes use of such framework and whose complexity is polylogarithmic in the dimension of the space, m, and the size of the initial training data n, provided the use of qRAMs; and polynomial in the precision, achieving an exponential speedup over the equivalent classical algorithm in n and m.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipComunidad de Madrid/FEDER
dc.description.sponsorshipUS Army Research Office
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63519
dc.identifier.doi10.1088/1367-2630/ab976f
dc.identifier.issn1367-2630
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1367-2630/ab976f
dc.identifier.relatedurlhttps://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7643
dc.issue.number7
dc.journal.titleNew journal of physics
dc.language.isoeng
dc.publisherIOP publishing ltd
dc.relation.projectID(FIS2017-91460-EXP; PGC2018-099169-B-I00FIS2018)
dc.relation.projectIDQUITEMAD-CM (S2018/TCS-4342)
dc.relation.projectIDW911NF-14-1-0103
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu53
dc.subject.keywordquantum algorithm
dc.subject.keywordactive learning
dc.subject.keywordquantum machine Learning
dc.subject.keywordAdversarial example
dc.subject.keywordSupport vector machine
dc.subject.keywordqRAM
dc.subject.keywordQuantum advantage
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleA quantum active learning algorithm for sampling against adversarial attacks
dc.typejournal article
dc.volume.number22
dspace.entity.typePublication
relation.isAuthorOfPublication8962ecbe-5f71-4c6d-8db5-fabc3ff31a99
relation.isAuthorOfPublication1cfed495-7729-410a-b898-8196add14ef6
relation.isAuthorOfPublication.latestForDiscovery8962ecbe-5f71-4c6d-8db5-fabc3ff31a99

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martín Delgado Alcántara MÁ 128 LIBRE+CC.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format

Collections