Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Diffraction in wide slits with semi-cylindrical edges

dc.contributor.authorSiegmann, Philip
dc.contributor.authorSánchez Brea, Luis Miguel
dc.contributor.authorMartínez Antón, Juan Carlos
dc.contributor.authorBernabeu Martínez, Eusebio
dc.date.accessioned2023-06-20T19:04:51Z
dc.date.available2023-06-20T19:04:51Z
dc.date.issued2002
dc.description© Elsevier B.V.
dc.description.abstractWe present an analytical model to obtain the diffraction pattern in far field of a metallic, thick slit based on the Geometrical Theory of Diffraction. The edges of the slit are modelled as semicylinders. We have considered that the thickness of the slit is sufficiently small compared to the width, so that the influence of multiple reflections between the edges may be neglected. The material in which the slit is made, as well as the polarization and angle of the incident beam, are considered. Notorious differences are obtained when compared to the classical diffraction from flat slits.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26781
dc.identifier.doi10.1078/0030-4026-00115
dc.identifier.issn0030-4026
dc.identifier.officialurlhttp://dx.doi.org/10.1078/0030-4026-00115
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59219
dc.issue.number2
dc.journal.titleOptik
dc.language.isoeng
dc.page.final62
dc.page.initial57
dc.publisherGustav Fischer Verlag
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordDiffraction
dc.subject.keywordSlit
dc.subject.keywordGeometrical Theory of Diffraction
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleDiffraction in wide slits with semi-cylindrical edges
dc.typejournal article
dc.volume.number113
dcterms.references[1] DeAcetis LA, Einstein FS, Juliano RA Jr., Lazar I: Single strip diffraction: comparison of Kirchhoff theory and geometrical theory with the exact solution in the limit of small glancing angle and width; perpendicular polarization. Appl. Opt. 15 (1976) 2866–2870. [2] Mayes TW, Melton BF: Fraunhofer diffraction of visible light by a narrow slit. Am J. Phys. 62 (1994) 397–403. [3] Skwirzynski JK: Proceedings of the NATO advanced study institute on theoretical methods for determining the interaction of electromagnetic waves with structures. Sijthoff & Noordhoff, Alphen aan den Rijn, the Netherlands 1981. [4] Chu YT, Anderson VE, Hubbell HH Jr., Ferrell TL: Asymptotic solution for the diffraction of an electromagnetic plane wave by cylinder-tipped half-plane. J. Opt. Soc. Am. 73 (1983) 768–775. [5] Einstein FS, Juliano RA, DeAcetis LA, Lazar I: Experimental investigation of the far-field diffraction by a semiinfinite plane of variable thickness: Parallel polarization. J. Opt. Soc. Am. 69 (1979) 24–27. [6] Mata Mendez O, Cadilhac M, Petit R: Diffraction of a two-dimensional electromagnetic beam wave by a thick slit pierced in a perfectly conducting screen. J. Opt. Soc. Am. 73 (1983) 328–331. [7] Hamid MAK, Mohsen A, Boerner WM: Diffraction by a slit in a thick conducting screen. J. Appl. Phys. 40 (1969) 3882–3883. [8] Keller JB: Geometrical Theory of diffraction. J. Opt. Soc. Am. 52 (1962) 116–130. [9] Hönl H, Maue AW, Westpfahl K: Handbuch der Physik. XXV, 1. pp. 495–531. Springer-Verlag, Berlin 1961. [10] Born M, Wolf E: Principles of Optics. Pergamon Press, Oxford 1980.
dspace.entity.typePublication
relation.isAuthorOfPublication72f8db7f-8a25-4d15-9162-486b0f884481
relation.isAuthorOfPublication1baf6769-50bc-4dcd-9479-8de2d65eec19
relation.isAuthorOfPublication.latestForDiscovery72f8db7f-8a25-4d15-9162-486b0f884481

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bernabeu,E71.pdf
Size:
194.64 KB
Format:
Adobe Portable Document Format

Collections