Some New Results On Ordered Fields

dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2023-06-21T02:01:45Z
dc.date.available2023-06-21T02:01:45Z
dc.date.issued1987
dc.description.abstractThe author shows there is a non-Archimedean ordering of the field R(x, y), where x and y are algebraically independent over K, for which the identity is the only order-preserving automorphism. The author proves the partly known result that the following statements about an ordered field K are equivalent: (1) each polynomial in K[x] satisfies the intermediate value theorem; (2) if f 2 K[x] and a < b, then f takes on its maximum value at some c 2 [a, b]; (3) K is real closed. A (not necessarily ordered) field K is said to have the extension property if each automorphism of K(x), where x is transcendental over K, is an extension of an automorphism of K. The author gives sufficient conditions for a field to have the the extension property. For example, a field has the extension property if, for some fixed integer n greater than two, each polynomial xn−ax−1, a 2 K, has a root in K.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15466
dc.identifier.doi10.1016/0021-8693(87)90033-0
dc.identifier.issn0021-8693
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/00218693
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64628
dc.issue.number1
dc.journal.titleJournal Of Algebra
dc.page.final12
dc.page.initial1
dc.publisherAcademic Press
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.14
dc.subject.keywordreal closed fields
dc.subject.keywordautomorphism of rational function field
dc.subject.keywordnon- archimedean ordered field
dc.subject.keywordEP fields
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleSome New Results On Ordered Fields
dc.typejournal article
dc.volume.number110
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Collections