Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Adaptive mapping and parameter selection scheme to improve automatic code generation for GPUs.

dc.conference.titleACM/IEEE International Symposium on Code Generation and Optimization
dc.contributor.authorJuega, J.C
dc.contributor.authorGómez Pérez, José Ignacio
dc.contributor.authorTenllado Van Der Reijden, Christian Tomás
dc.contributor.authorCatthoor, Francky
dc.date.accessioned2024-02-01T15:57:32Z
dc.date.available2024-02-01T15:57:32Z
dc.date.issued2014
dc.description.abstractGraphics Processing Units (GPUs) are today’s most powerful coprocessors for accelerating massive data-parallel algorithms. However, programmers are forced to adopt new programming paradigms to take full advantage of their computing capabilities; this requires significant programming and maintenance effort. As a result, there is an increasing interest in the development of tools for automatic mapping of sequential code to GPUs. Current automatic tools require both a deep knowledge on the GPU architecture and the algorithm being mapped, which makes the mapping process a labor-intensive task. This paper proposes a technique that improves the code mapping of one of these tools, PPCG, removing the need for any user interaction. It relies on data reuse estimations to explore the mapping space and compute appropriate values for the number of threads per threadblock and tile sizes. Our results show speedups of 3x on average compared to the default code generated by PPCG.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationJ. C. Juega, J. I. Gomez, C. Tenllado, and F. Catthoor. 2014. Adaptive Mapping and Parameter Selection Scheme to Improve Automatic Code Generation for GPUs. In Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO '14). Association for Computing Machinery, New York, NY, USA, 251–261. https://doi.org/10.1145/2581122.2544145
dc.identifier.doi10.1145/2544137.2544145
dc.identifier.isbn978-1-4503-2670-4
dc.identifier.officialurlhttps://doi.org/10.1145/2581122.2544145
dc.identifier.urihttps://hdl.handle.net/20.500.14352/97885
dc.language.isoeng
dc.rights.accessRightsrestricted access
dc.subject.keywordGPU
dc.subject.keywordCUDA
dc.subject.keywordCompilers
dc.subject.keywordPolyhedral Model
dc.subject.keywordTiling
dc.subject.keywordLoop transformations
dc.subject.keywordPPCG
dc.subject.ucmHardware
dc.subject.unesco3304.06 Arquitectura de Ordenadores
dc.titleAdaptive mapping and parameter selection scheme to improve automatic code generation for GPUs.
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublicatione83f8db2-0fb6-4141-8ec5-d20d09ce194d
relation.isAuthorOfPublicationd47f11bf-2134-459b-bcf7-6e1efa4aa8b6
relation.isAuthorOfPublication.latestForDiscoverye83f8db2-0fb6-4141-8ec5-d20d09ce194d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adaptive_Mapping.pdf
Size:
502.03 KB
Format:
Adobe Portable Document Format

Collections