The symmetric crosscap number of the families of groups DC3 × Cn and A4 × Cn

dc.contributor.authorEtayo Gordejuela, José Javier
dc.contributor.authorGromadzki, G.
dc.contributor.authorMartínez García, Ernesto
dc.date.accessioned2023-06-20T00:13:23Z
dc.date.available2023-06-20T00:13:23Z
dc.date.issued2012
dc.description.abstractEvery finite group G acts as an automorphism group of some non-orientable Klein surfaces without boundary. The minimal genus of these surfaces is called the symmetric crosscap number and denoted by σ˜(G). The systematic study about the symmetric crosscap number was begun by C. L. May who also calculated it for certain finite groups. It is known that 3 cannot be the symmetric crosscap number of a group. Conversely, all integers non-congruent with 3 or 7 modulo 12 are the symmetric crosscap number of some group. Here we obtain the symmetric crosscap number for the families of groups DC3× Cn and A4× Cn and we prove that their values cover a quarter of the numbers congruent with 3 modulo 12 and three quarters of the numbers congruent with 7 modulo 12. As a consequence there are only five integers lower than 100 which are not known if they are the symmetric crosscap number of some group.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15816
dc.identifier.issn0362-1588
dc.identifier.officialurlhttp://math.uh.edu/~hjm/restricted/pdf38(2)/02gordejuela.pdf
dc.identifier.relatedurlhttp://math.uh.edu/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42222
dc.issue.number2
dc.journal.titleHouston Journal of Mathematics
dc.page.final358
dc.page.initial345
dc.publisherUniversity of Houston
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.54
dc.subject.keywordKlein surfaces
dc.subject.keywordAutomorphism
dc.subject.ucmGrupos (Matemáticas)
dc.titleThe symmetric crosscap number of the families of groups DC3 × Cn and A4 × Cnen
dc.typejournal article
dc.volume.number38
dspace.entity.typePublication
relation.isAuthorOfPublication2275e5ec-53a7-4e0f-82d6-517cdf4cd56c
relation.isAuthorOfPublication.latestForDiscovery2275e5ec-53a7-4e0f-82d6-517cdf4cd56c

Download

Collections