Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Temporal and spatial variabilities of total ozone column over Portugal

dc.contributor.authorAntón, M.
dc.contributor.authorBortoli, D.
dc.contributor.authorCosta, M. J.
dc.contributor.authorKulkarni, P. S.
dc.contributor.authorDomingues, A. E.
dc.contributor.authorBarriopedro Cepero, David
dc.contributor.authorSerrano, A., A.
dc.contributor.authorSilva, A. M.
dc.date.accessioned2023-06-20T03:38:01Z
dc.date.available2023-06-20T03:38:01Z
dc.date.issued2011-03-15
dc.description© 2010 Elsevier Inc. The authors thank the NASA TOMS Science Team for the satellite data used in this paper. Manuel Anton thanks the Ministerio de Ciencia e Innovacion and Fondo Social Europeo for the award of a postdoctoral grant (Juan de la Cierva). Author (Pavan S Kulkarni) is thankful to the Geophysics Centre of the University of Evora (CGE-UE) for the fellowship in the project 'SPATRAM-MIGE Polar Project', funded by the Portuguese Science Foundation - FCT. This work was partially supported by Ministerio de Ciencia e Innovacion under project CGL2008-05939-C03-02/CLI and by Fundacao para a Ciencia e a Tecnologia though projects PROPOLAR and PTDC/CTE-ATM/102142/2008.
dc.description.abstractThis paper focuses on the spatial-temporal structure of total ozone column (TOC) over Portugal. This relevant region of southwestern Europe has not been evaluated yet in detail due to the lack of continuous and well-covered ground-based TOC measurements. The data used in this study are derived from the NASA's Total Ozone Mapping Spectrometer (TOMS) for the period 1978-2005. The TOC spatial behavior shows no significant longitudinal variability (smaller than 3%). In contrast, the variation in latitude changes between 3.5% and 6% depending on the calendar month. The TOC in the northern Portugal is, on average, higher than that recorded in the South. The temporal variability was analyzed for three scales: long-term, seasonal and short-term. The long-term TOC changes are analyzed between 1978 and 1999 by means of linear least squares fits. The results show an annual TOC trend of (2.65 +/- 0.70)%/decade which is statistically significant at the 95% confidence level. This TOC decrease is smaller than the trends obtained in other midlatitudes regions which could be partially explained by the compensation due to the observed increase in the tropospheric ozone over the Iberian Peninsula. A trend analysis performed for each individual month shows a statistically significant TOC decline between March and October, with a maximum linear trend value of (-7.30 +/- 45)%/decade in May. The amplitude of the seasonal TOC cycle over Portugal shows a slight dependence in latitude, varying from 28.6 DU (37.5 degrees N) to 33.6 DU (41.5 degrees N). Finally, the short-term variability showed a notable seasonal behavior, with maximum day-to-day TOC changes in winter (similar to 6%) and minimum in summer (similar to 3%). In addition, the persistence (characterized by the autocorrelation coefficients) strongly decreases after a few days (except in summer months).
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipFondo Social Europeo
dc.description.sponsorshipGeophysics Centre of the University of Evora (CGE-UE)
dc.description.sponsorshipPortuguese Science Foundation - FCT
dc.description.sponsorshipFundaçao para a Ciencia e a Tecnologia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24296
dc.identifier.doi10.1016/j.rse.2010.11.013
dc.identifier.issn0034-4257
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.rse.2010.11.013
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44104
dc.issue.number3
dc.journal.titleRemote sensing of environment
dc.language.isoeng
dc.page.final863
dc.page.initial855
dc.publisherElsevier Science INC
dc.relation.projectIDCGL2008-05939-C03-02/CLI
dc.relation.projectIDPTDC/CTE-ATM/102142/2008
dc.rights.accessRightsrestricted access
dc.subject.cdu52
dc.subject.keywordNorth-Atlantic oscillation
dc.subject.keywordStratospheric ozone
dc.subject.keywordInterannual variability
dc.subject.keywordSatellite measurements
dc.subject.keywordTropopause pressure
dc.subject.keywordTropospheric ozone
dc.subject.keywordNitrogen-dioxide
dc.subject.keywordCentral-Europe
dc.subject.keywordTrends
dc.subject.keywordRadiation
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleTemporal and spatial variabilities of total ozone column over Portugal
dc.typejournal article
dc.volume.number115
dcterms.referencesAlexandris, D., Varotsos, C., Kondratyev, K. Y., & Chronopoulos, G. (1999). On the altitude dependence of solar effective UV. Physics and Chemistry of the Earth. Part C: Solar, Terrestrial & Planetary Science, 24, 515−517. Antón, M., Serrano, A., Cancillo, M. L., & García, J. A. (2008). Total ozone and solar erythemal irradiance in southwestern Spain: Day-to-day variability and extreme episodes. Geophysical Research Letters, 35, L20804. doi:10.1029/2008GL035290. Antón, M., Bortoli, D., Vilaplana, J. M., Silva, A. M., Serrano, A., Costa, M. J., et al. (2010). Total ozone column from direct and diffuse spectral solar irradiance in the Southwest of the Iberian peninsula. Journal of Geophysical Research, 115, D05305. doi:10.1029/2009JD012514. Antón, M., Koukouli, M. E., Kroon, M., McPeters, R. D., Labow, G. J., Balis, D., et al. (2010). Global validation of empirically corrected EP-Total Ozone Mapping Spectrometer (TOMS) total ozone columns using Brewer and Dobson ground-based measurements. Journal of Geophysical Research, 115, D19305. doi:10.1029/2010JD014178. Antón, M., López, M., Serrano, A., Bañón,M., & García, J. A. (2010).Diurnal variability of total ozone column over Madrid (Spain). Atmospheric Environment, 44, 2793−2798. Appenzeller, C., Weiss, A. K., & Staehelin, J. (2000). North Atlantic Oscillation modulates total ozone winter trends. Geophysical Research Letters, 27, 1131−1134. Barsby, J., & Diab,R.D. (1995). Total ozone and synopticweather relationship over southern Africa and surrounding ocean. Journal of Geophysical Research, 100, 3023−3032. Bernhard, G., Booth, C. R., & Ehramjian, J. C. (2004). Version 2 data of the National Science Foundation's Ultraviolet Radiation Monitoring Network: South Pole. Journal of Geophysical Research, 109, D21207. doi:10.1029/2004JD004937. Bhartia, P. K., &Wellemeyer, C. (2002). TOMS-V8 total O3 algorithm. In P. K. Bhartia (Ed.), OMI Algorithm Theoretical Basis Document, vol. II, OMI Ozone Products (pp. 15−31). Greenbelt,Md:NASA Goddard Space Flight Cent. (Available at http://eospso.gsfc.nasa. gov/eos_homepage/for_scientists/atbd/index.php). Bojkov, R. D., & Fioletov, F. E. (1995). Estimating the global ozone characteristics during the last 30 years. Journal of Geophysical Research, 100, 16537−16551. Bojkov, R. D., Bishop, L., Hill, W. J., Reinsel, G. C., & Tiao, G. C. (1990). A statistical trend analysis of revised Dobson total ozone data over the Northern Hemisphere. Journal of Geophysical Research, 95, 9785−9807. Bortoli, D., Silva, A. M., Costa, M. J., Domingues, A. F., & Giovanelli, G. (2009a). Measurements of stratospheric ozone and nitrogen dioxide at Evora, Portugal. International Journal of Remote Sensing, 30, 4209−4226. Bortoli, D., Silva, A. M., Costa, M. J., Domingues, A. F., & Giovanelli, G. (2009b). Monitoring of atmospheric ozone and nitrogen dioxide over the south of Portugal by ground-based and satellite observations. Optics Express, 17, 12944−12959. Bortoli, D., Silva, A. M., & Giovanelli, G. (2010). A new multi-purpose UV–Vis spectrometer for air quality monitoring and climatic studies. International Journal of Remote Sensing, 31, 705−725. doi:10.1080/01431160902896231. Callis, L. B., Natarajan, M., Lambeth, J. D., & Boughner, R. E. (1997). On the origin of midlatitude ozone changes: Data analysis and simulations for 1979–1993. Journal of Geophysical Research, 102, 1215−1228. Chackness, A. P., & Varotsos, C. A. (1994). Ozone depletion over Scotland as derived from nimbus-7 TOMS measurements. International Journal of Remote Sensing, 15, 2659−2668. Chackness, A. P., & Varotsos, C. A. (1995). The present status of the total ozone depletion over Greece and Scotland — A comparison between Mediterranean and more northerly latitudes. International Journal of Remote Sensing, 16, 1751−1763. Chandra, S. (1993). Changes in stratospheric ozone and temperature due to the eruptions of Mt. Pinatubo. Geophysical Research Letters, 20, 33−36. Chen, D., & Nunez, M. (1998). Temporal and spatial variability of total ozone in southwest Sweden revealed by two ground-based instruments. International Journal of Climatology, 18, 1237−1246. Den Outer, P. N., Slaper, H., & Tax, R. B. (2005). UV radiation in the Netherlands: Assessing long-term variability and trends in relation to ozone and clouds. Journal of Geophysical Research, 110, D02203. doi:10.1029/2004JD004824. Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315. doi:10.1038/315207a0. Fioletov,V. E.,&Shepherdd, T.G. (2005).Summertime total ozone variations overmiddle and polar latitudes. Geophysical Research Letters, 32, L04807. doi:10.1029/2004GL022080. Fioletov, V. E., McArthur, L., Kerr, J. E., &Wardle, D. I. (2001). Long-termvariations of UV-B irradiance over Canada estimated from Brewer observations and derived from ozone and pyranometer measurements. Journal of Geophysical Research, 106, 2307−2309. Fioletov, V. E., Bodeker, G. E.,Miller, A. J., McPeters, R. D., & Stolarski, R. (2002). Global and zonal total ozone variations estimated fromground-based and satellite measurements: 1964–2000. Journal of Geophysical Research, 107, 4647. doi:10.1029/2001JD001350. Fioletov, V. E., Labow, G., Evans, R., et al. (2008). Performance of the ground-based total ozone network assessed using satellite data. Journal of Geophysical Research, 113, D14313. doi:10.1029/2008JD009809, 2008. Frederick, J. E., Manner, V. W., & Booth, C. R. (2001). Interannual variability in solar ultraviolet irradiance over decadal time scales at latitude 55 south. Photochemistry and Photobiology, 74, 771−779. Fusco, A.C., & Salby, M.L. (1999). Interannual variations of total ozone and their relationship to variations of planetary wave activity. Journal of Climatology, 12, 1619−1629. Hadjinicolaou, P., Jrrar, A., Pyle, J. A., & Bishop, L. (2002). The dynamically driven longterm trend in stratospheric ozone over northern middle latitudes. Quarterly Journal Royal Meteorological Society, 128, 1393−1412. Hadjinicolaou, P., Pyle, J. A., & Harrise, N. R. P. (2005). The recent turnaround in stratospheric ozone over northern middle latitudes: A dynamical modeling perspective. Geophysical Research Letters, 32, L12821. doi:10.1029/2005GL022476. Haffner, D. P., Taylor, S. L., Wellemeyer, C. G., Jaross, G., McPeters, R. D., & Bhartia, P. K. (2004). EarthProbe TOMS Optical Degradation and Calibration Corrections, presented at Quadrennial Ozone Symposium, Eur. Comm., Kos, Greece. Harris, N. R. P., Ancellet, J., Bishop, L., Hofmann, D. J., Kerr, J. B., McPeters, R. D., et al. (1997). Trends in stratospheric and free tropospheric ozone. Journal of Geophysical Research, 102, 1571−1590. Herman, J. R., Hudson, R., McPeters, R., Stolarski, R., Ahmad, Z., Gu, X. -Y., et al. (1991). A new self-calibration method applied to TOMS/SBUV backscattered ultraviolet data to determine long-term global ozone change. Journal of Geophysical Research, 96, 7531−7545. Herman, J. R., McPeters, R. D., & Larko, D. (1993). Ozone depletion at Northern and Southern latitudes derived from January 1979 to December 1991 Total Ozone Mapping Spectrometer Data. Journal of Geophysical Research, 98, 12783−12793. Hoinka, K. P., Claude, H., & Köhler, U. (1996). On the correlation between tropopause pressure and ozone above Central Europe. Geophysical Research Letters, 23, 1753−1756. Holton, J. R., & Tan, H. -C. (1980). The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. Journal of Atmospheric Sciences, 37, 2200−2208. Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., & Pfister, L. (1995). Stratosphere–troposphere exchange. Reviews of Geophysics, 33, 403−439. Hood, L. L., McCormack, J. P., & Labitzke, K. (1997). An investigation of dynamical contributions to midlatitude ozone trends in winter. Journal of Geophysical Research, 102, 13079−13093. Hudson, R. D., Andrade, M. F., Follette, M. B., & Frolov, A. D. (2006). The total ozone field separated into meteorological regimes — Part II: Northern Hemisphere midlatitude total ozone trends. Atmospheric Chemistry and Physics, 6, 5183−5191. Iqbal, M. (1983). An introduction to solar radiation. Canada: Academic Press. Kerr, J. B., & McElroy, C. T. (1995). Total ozone measurements made with the Brewer ozone spectrophotometer during STOIC 1989. Journal of Geophysical Research, 100, 9225−9230. Kiehl, J. T., Schneider, T. L., Portmann, R. W., & Solomon, S. (1999). Climate forcing due to tropospheric and stratospheric ozone. Journal of Geophysical Research, 104, 31239−31254. Kondratyev, K. Y., & Varotsos, C. A. (1996). Global total ozone dynamics — Impact on surface solar ultraviolet radiation variability and ecosystems. Environmental Science and Pollution Research, 3, 205−209. Kulkarni, P. S., Bortoli, D., Salgado, R., Antón, M., Costa, M. J., & Silva, A. M. (2011). Tropospheric ozone variability over Iberian Peninsula. Atmospheric Environment, 45, 174−182. Malanca, F. E., Conziani, P. O., & Agüello, G. A. (2005). Trends evolution of ozone between 1980 and 2000 atmidlatitudes over the Southern Hemisphere: Decadal differences in trends. Journal of Geophysical Research, 110, D05102. doi:10.1029/2004JD004977. McPeters, R. D., Bhartia, P. K., Krueger, A. J., et al. (1996). Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide. NASA, Greenbelt, MD: NASA Reference Publication. McPeters, R. D., Bhartia, P. K., & Krueger, A. J. (1998). Earth Probe Total Ozone Mapping Spectrometer (TOMS)Data ProductsUser'sGuide.NASA,Greenbelt,MD:NASAReference Publication. McPeters, R. D., Taylor, S., & Jaross, G. (2007). Empirically corrected TOMS Earth Probe data set, personal communication. Available at. http://toms.gsfc.nasa.gov/news/ Corrected_EP_TOMS_README.pdf. Molina, M. J., & Rowland, F. S. (1974). Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249, 810−812. Monge Sanz, B. M., Casale, G. R., Palmieri, S., & Siani, A. M. (2003). An investigation on total ozone over western Mediterranean. Il Nuovo Cimento, 26, 53−60. Niu, X., Frederick, J. E., Stein, M., & Tiao, G. C. (1992). Trends in column ozone based on TOMS data. Dependence on month, latitude, and longitude. Journal of Geophysical Research, 97, 14661−14669. Orsolini, Y. J., & Doblas-Reyes, F. J. (2003). Ozone signatures of climate patterns over the Euro-Atlantic sector in the spring. Quarterly Journal Royal Meteorological Society, 129, 3251−3263. Orsolini, Y. J., & Limpasuvan, V. (2001). The North Atlantic Oscillation and the occurrences of ozone miniholes. Geophysical Research Letters, 28, 4099−4102. Orsolini, Y. J., Eskes, H., Hansen, G., Hoppe, U. P., Kylling, A., Kyro, E., et al. (2003). Summertime low-ozone episodes at northern high latitudes. Quarterly Journal Royal Meteorological Society, 129, 3265−3275. Raj, P. E., Devara, P. C. S., Pandithurai, G., Maheskumar, R. S., Dani, K. K., Saha, S. K., et al. (2004). Variability in Sun photometer-derived total ozone over a tropical urban station. Journal of Geophysical Research, 109, D08309. doi:10.1029/2003JD004195. Reed, R. J. (1950). The role of vertical motions in ozone–weather relationships. Journal of Meteorology, 7, 263−267. Rex, M., von der Salawitch, R. J. P., Gathen, N. R., Harris, P., Chipperfield, M., & Naujokat, B. (2004). Arctic ozone loss and climate change. Geophysical Research Letters, 31, L04116. doi:10.1029/2003GL018844. Schmalwieser, A. W., Schauberger, G., & Janouchu, M. (2003). Temporal spatial variability of total ozone content over Central Europe: Analysis in respect to the biological effect on plants. Agricultural and Forest Meteorology, 120, 9−26. Schubert, S. D., & Munteanu, M. J. (1988). An analysis of tropopause pressure and total ozone correlations. Monthly Weather Review, 116, 569−582. Solomon, S. (1999). Stratospheric ozone depletion: A review of concepts and history. Reviews of Geophysics, 37(3), 275−316. Soukharev, B. (1999). On the solar/QBO effect on the interannual variability of total ozone and the stratospheric circulation over Northern Europe. Journal of Atmospheric and Solar-Terrestrial Physics, 61, 1093−11091. Staehelin, J., Harris, N. R. P., Appenzeller, C., Eberhard, J., & Piechowski, M. (2001). Observations of ozone trends. Reviews of Geophysics, 39, 231−290. Steinbrecht, W., Claude, H., Köhler, U., & Hoinka, K. P. (1998). Correlations between tropopause height and total ozone: Implications for long-term changes. Journal of Geophysical Research, 103, 19183−19192. Stolarski, R. S., Krueger, A. J., Schoeberl, M. R.,McPeters, R. D., Newman, P. A., & Alpert, J. C. (1986). Nimbus 7 satellitemeasurements of the springtime Antarctic ozone decrease. Nature, 322, 808−811. Stolarski, R., Bojkov, R., Bishop, L., Zerefos, C., Staehelin, J., & Zawodny, J. (1992). Measured trends in stratospheric ozone. Science, 256, 342−349. Svendby, T. M., & Dahlback, A. (2004). Statistical analysis of total ozone measurements in Oslo, Norway, 1978–1998. Journal of Geophysical Research, 109, D16107. doi:10.1029/2004JD004679. Tung, K. K., & Yang, H. (1988). Dynamic variability of column ozone. Journal of Geophysical Research, 93, 11123−11128. United Nations Environment Programme (UNEP) (2006). United Nations Environmental Programme: Environmental effects of ozone depletion and its interactions with climate change: 2006 assessment. Tech. Rep.,UNEP, Nairobi, Kenya. Varotsos, C. A., Chronpoulos, G. J., Katsiki, S., & Sakellariou, N. K. (1995). Further evidence of the role of air-pollution on solar ultraviolet-radiation reaching the ground. International Journal of Remote Sensing, 16, 1883−1886. Varotsos, C., Cartalis, C., Vlmarkis, A., Tzanis, C., & Keramitsoglouk, I. (2004). The long-term coupling between column ozone and tropopause properties. Journal of Climatology, 17, 3843−3854. Vaughan, G., & Price, J. (1991). On the relation between total ozone and meteorology. Quarterly Journal Royal Meteorological Society, 117, 1281−1298. Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., et al. (1998). Factors affecting the detection of trends: Statistical considerations and applications to environmental data. Journal of Geophysical Research, 103(D14), 17149−17161. Wellemeyer, C. G., Bhartia, P. K., Taylor, S. L., Qin, W., & Ahn, C. (2004). Version 8 Total Ozone Mapping Spectrometer (TOMS) Algorithm, paper presented at Quadrennial Ozone Symposium, Eur. Comm., Kos, Greece. World Health Organization (WHO) (1995). Protection against exposure to ultraviolet radiation. Tech. Rep. WHO/EHG #17, Geneva, Switzerland. World Meteorological Organization (WMO) (2006). Scientific assessment of ozone depletion: Global ozone research and monitoring project. Technical Report 50, Geneva, Switzerland. Ziemke, J. R., Chandra, S., McPeters, R. D., & Newman, P. A. (1997). Dynamical proxies of column ozone with applications to global trend models. Journal of Geophysical Research, 102, 6117−6129.
dspace.entity.typePublication
relation.isAuthorOfPublication71d8f23d-ceaf-4f5f-8434-10a193bc3835
relation.isAuthorOfPublication.latestForDiscovery71d8f23d-ceaf-4f5f-8434-10a193bc3835

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
barriopedro06.pdf
Size:
969.87 KB
Format:
Adobe Portable Document Format

Collections