On the conformal geometry of transverse Riemann-Lorentz manifolds
| dc.contributor.author | Aguirre Dabán, Eduardo | |
| dc.contributor.author | Fernandez, V. | |
| dc.contributor.author | Lafuente, J. | |
| dc.date.accessioned | 2023-06-20T09:31:31Z | |
| dc.date.available | 2023-06-20T09:31:31Z | |
| dc.date.issued | 2007-06 | |
| dc.description.abstract | Physical reasons suggested in [J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815-1834] for the Quantum Gravity Problem lead us to study type-changing metrics on a manifold. The most interesting cases are Transverse Rieniann-Lorentz Manifolds. Here we study the conformal geometry of such manifolds. | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/14641 | |
| dc.identifier.doi | 10.1016/j.geomphys.2007.01.003 | |
| dc.identifier.issn | 0393-0440 | |
| dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0393044007000046 | |
| dc.identifier.relatedurl | http://www.sciencedirect.com | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/49806 | |
| dc.issue.number | 7 | |
| dc.journal.title | Journal of geometry and physics | |
| dc.language.iso | eng | |
| dc.page.final | 1547 | |
| dc.page.initial | 1541 | |
| dc.publisher | Elsevier | |
| dc.rights.accessRights | restricted access | |
| dc.subject.cdu | 519.6 | |
| dc.subject.cdu | 530.1 | |
| dc.subject.keyword | Singularities | |
| dc.subject.keyword | Extendability | |
| dc.subject.keyword | Metrics | |
| dc.subject.ucm | Física matemática | |
| dc.subject.ucm | Análisis numérico | |
| dc.subject.unesco | 1206 Análisis Numérico | |
| dc.title | On the conformal geometry of transverse Riemann-Lorentz manifolds | |
| dc.type | journal article | |
| dc.volume.number | 57 | |
| dcterms.references | E. Aguirre, J. Lafuente, Trasverse Riemann–Lorentz metrics with tangent radical, Differential Geom. Appl. 24 (2) (2005) 91–100. J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815–1834. U. Hertrich-Jeromin, Introduction to M¨obius Differential Geometry, Cambridge Univ. Press, 2003. M. Kossowski, Fold singularities in pseudoriemannian geodesic tubes, Proc. Amer. Math. Soc. 95 (1985) 463–469. M. Kossowski, Pseudo-riemannian metric singularities and the extendability of parallel transport, Proc. Amer. Math. Soc. 99 (1987) 147–154. M. Kossowski, M. Kriele, Transverse, type changing, pseudo riemannian metrics and the extendability of geodesics, Proc. R. Soc. Lond. Ser. A 444 (1994) 297–306. M. Kossowski, M. Kriele, The volume blow-up and characteristic classes for transverse, type changing, pseudo-riemannian metrics, Geom. Dedicata 64 (1997) 1–16. B. O‘Neill, Semi-Riemannian Geometry, Academic Press, 1983. | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 88ba3646-cb2e-4524-b117-737c56cec2a4 | |
| relation.isAuthorOfPublication.latestForDiscovery | 88ba3646-cb2e-4524-b117-737c56cec2a4 |
Download
Original bundle
1 - 1 of 1

