On the conformal geometry of transverse Riemann-Lorentz manifolds

dc.contributor.authorAguirre Dabán, Eduardo
dc.contributor.authorFernandez, V.
dc.contributor.authorLafuente, J.
dc.date.accessioned2023-06-20T09:31:31Z
dc.date.available2023-06-20T09:31:31Z
dc.date.issued2007-06
dc.description.abstractPhysical reasons suggested in [J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815-1834] for the Quantum Gravity Problem lead us to study type-changing metrics on a manifold. The most interesting cases are Transverse Rieniann-Lorentz Manifolds. Here we study the conformal geometry of such manifolds.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14641
dc.identifier.doi10.1016/j.geomphys.2007.01.003
dc.identifier.issn0393-0440
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0393044007000046
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49806
dc.issue.number7
dc.journal.titleJournal of geometry and physics
dc.language.isoeng
dc.page.final1547
dc.page.initial1541
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu519.6
dc.subject.cdu530.1
dc.subject.keywordSingularities
dc.subject.keywordExtendability
dc.subject.keywordMetrics
dc.subject.ucmFísica matemática
dc.subject.ucmAnálisis numérico
dc.subject.unesco1206 Análisis Numérico
dc.titleOn the conformal geometry of transverse Riemann-Lorentz manifolds
dc.typejournal article
dc.volume.number57
dcterms.referencesE. Aguirre, J. Lafuente, Trasverse Riemann–Lorentz metrics with tangent radical, Differential Geom. Appl. 24 (2) (2005) 91–100. J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815–1834. U. Hertrich-Jeromin, Introduction to M¨obius Differential Geometry, Cambridge Univ. Press, 2003. M. Kossowski, Fold singularities in pseudoriemannian geodesic tubes, Proc. Amer. Math. Soc. 95 (1985) 463–469. M. Kossowski, Pseudo-riemannian metric singularities and the extendability of parallel transport, Proc. Amer. Math. Soc. 99 (1987) 147–154. M. Kossowski, M. Kriele, Transverse, type changing, pseudo riemannian metrics and the extendability of geodesics, Proc. R. Soc. Lond. Ser. A 444 (1994) 297–306. M. Kossowski, M. Kriele, The volume blow-up and characteristic classes for transverse, type changing, pseudo-riemannian metrics, Geom. Dedicata 64 (1997) 1–16. B. O‘Neill, Semi-Riemannian Geometry, Academic Press, 1983.
dspace.entity.typePublication
relation.isAuthorOfPublication88ba3646-cb2e-4524-b117-737c56cec2a4
relation.isAuthorOfPublication.latestForDiscovery88ba3646-cb2e-4524-b117-737c56cec2a4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01.pdf
Size:
230.2 KB
Format:
Adobe Portable Document Format

Collections