General structure of the solutions of the Hamiltonian constraints of gravity
dc.contributor.author | Fernández-Rañada, Antonio | |
dc.date.accessioned | 2023-06-20T03:38:47Z | |
dc.date.available | 2023-06-20T03:38:47Z | |
dc.date.issued | 2009-06 | |
dc.description | © World Scientific Publishing. We acknowledge Dr. R. Tresguerres for useful discussions and to Dr. B. Coll for interesting suggestions on the intrinsic definition of the different classes. J. Martin is in debt to Junta de Castilla y León for the financial support. | |
dc.description.abstract | A general framework for the solutions of the constraints of pure gravity is constructed. It provides with well defined mathematical criteria to classify their solutions in four classes. Complete families of solutions are obtained in some cases. A starting point for the systematic study of the solutions of Einstein gravity is suggested. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Junta de Castilla y León | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/24904 | |
dc.identifier.doi | 10.1142/S0219887809003734 | |
dc.identifier.issn | 0219-8878 | |
dc.identifier.officialurl | http://dx.doi.org/10.1142/S0219887809003734 | |
dc.identifier.relatedurl | http://www.worldscientific.com | |
dc.identifier.relatedurl | http://arxiv.org/abs/0709.0884 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44145 | |
dc.issue.number | 4 | |
dc.journal.title | International Journal of Geometric Methods in Modern Physics | |
dc.language.iso | eng | |
dc.page.final | 644 | |
dc.page.initial | 631 | |
dc.publisher | World Scientific | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537 | |
dc.subject.keyword | Gauge-Theory | |
dc.subject.keyword | Relativity | |
dc.subject.keyword | Formulation | |
dc.subject.keyword | Variables | |
dc.subject.keyword | Spin. | |
dc.subject.ucm | Electricidad | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.unesco | 2202.03 Electricidad | |
dc.title | General structure of the solutions of the Hamiltonian constraints of gravity | |
dc.type | journal article | |
dc.volume.number | 6 | |
dcterms.references | [1] Arnowit, R., Deser, S., Misner, C. W., Phys. Rev., 117, 1595 (1960). [2] Arnowit, R., Deser, S., Misner, C. W., “The dynamics of general relativity” in Gravitation: an introduction to current research, Wiley, New York (1962), pp. 227-265. [3] De Witt, B. S., Phys. Rev., 160, 1113 (1967). [4] A. Lichnerowicz, Thèse d’État, Université de Paris, Paris (1939). [5] A. Lichnerowicz, Journal de Mathématiques Pures et Appliquées, 23, 37 (1944). [6] Y. Choquet–Bruhat, Comptes Rendues de l’Académie des Sciences, 226, 1071 (1948). [7] Y. Choquet–Bruhat, Journal of Rational Mechanics and Analysis, 5, 951 (1956). [8] De Witt, B. S., Phys. Rev. Lett, 13, 114. [9] Misner, C. W., and Thorne, K. S., and Wheeler, J. A., Gravitation, (Freeman, St. Francisco, (1973). [10] Hehl, F. W., Von Der Hayde, P., Kerlick, G. D., Nester, J. M., Rev. Mod. Phys., 48, 393 (1976). [11] Gonwald, F., Hehl, F. W., “On gauge aspects of Gravity”, in Proceedings of 14th School of Cosmology and Gravitation, Erice (Italy) (1995). [12] Hehl, F. W., Mc Crea, J. D., Mielke, E. W., Neeman, Y., Phys. Rept., 258, 1 (1995). [13] Tresguerres, R., Mielke, E. W., Phys. Rev. D, 62, 04404 (2000). [14] Capovilla, R., Jacobson, T., Dell, J., Phys. Rev. Lett., 63, 2325 (1989). [15] Barbero, J. F., Class. Quant. Grav., 12, L5 (1995). [16] Capovilla, R., Jacobson, T., Dell, J., Clas. Quant. Grav., 8, 59 (1991). [17] Tiemblo, A., Tresguerres, R., Gen. Relativ. Gravit., 38, 1839 (2006). [18] York, James W., Phys Rev Lett , 26, 1656 (1971) and 28, 1082 (1972). [19] Romano, J., gr–qc/9303032. [20] Barbero, J. F., Phys. Rev D, 51, 5507 (1995). [21] Immirzi, G., Nucl. Phys. Proc. Suppl., 57, 65 (1997). [22] Samuel, J., Class. Quant. Grav., 17 L141 (2000). [23] Ortin. T., Gravity and strings, (Cambridge, 2004). [24] Blagojevic, M., Gravitation and gauge symmetries, (IOP Publishing Co., Bristol, 2002). [25] Hanson, A., Regge, T.,d Teitelboim C., “Constrained Hamiltonian Systems”, Accademia dei Lincei, Roma (1976). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1