Perspectiva física del origen y evolución de la Tierra . Un modelo de evolución térmica para el estudio de la tectónica de placas.
Loading...
Official URL
Full text at PDC
Publication date
2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Este trabajo aborda la evolución térmica de la Tierra y su relación con la tectónica de placas, cruciales para entender su habitabilidad. Se utiliza un modelo para estimar la tasa de enfriamiento terrestre y prever el cese de la actividad de las placas tectónicas. Este enfoque se extiende a exoplanetas rocosos, explorando la posibilidad de tectónica activa como indicador de habitabilidad. Se concluye que la viscosidad del manto terrestre se autorregula por la temperatura, minimizando el efecto de la temperatura inicial en los modelos térmicos. Además de una convección vigorosa, descrita por el número de Rayleigh, existen otras influencias adicionales como clima y la presencia de agua en una tectónica de placas activa. Actualmente, la Tierra se enfría principalmente debido al descenso en la producción de calor generado por las desintegraciones radiactivas. A causa de este enfriamiento, se estima que la tectónica de placas continuará durante aproximadamente 6,4 mil millones de años más. La eficiencia de enfriamiento afecta la evolución térmica, mostrando que planetas como Marte podrían evolucionar de manera similar a la Tierra bajo una eficiencia de enfriamiento menor. Además, se destaca que la tectónica de placas es una posibilidad entre varios regímenes tectónicos, cuestionando si la habitabilidad terrestre es una excepción a condiciones naturales, que generalmente conducen a la inhabitabilidad.
This study addresses Earth’s thermal evolution and its relationship with plate tectonics, crucial for understanding its habitability. A model is used to estimate Earth’s cooling rate and predict the cessation of plate tectonic activity. This approach extends to rocky exoplanets, exploring active tectonics as an indicator of habitability. It is concluded that the viscosity of Earth’s mantle self-regulates with temperature, minimizing the initial temperature’s impact on thermal models. In addition to vigorous convection, characterized by the Rayleigh number, other influences such as climate and the presence of water affect active plate tectonics. Currently, Earth is cooling primarily due to the decrease in heat production from radioactive decay. As a result of this cooling, it is estimated that plate tectonics will continue for approximately 6.4 billion years. Cooling efficiency influences thermal evolution, suggesting planets like Mars could evolve similarly to Earth under a lower cooling efficiency. Furthermore, plate tectonics is highlighted as one among several possible tectonic regimes, questioning whether terrestrial habitability is an exception to natural conditions, which generally lead to inhabitability.
This study addresses Earth’s thermal evolution and its relationship with plate tectonics, crucial for understanding its habitability. A model is used to estimate Earth’s cooling rate and predict the cessation of plate tectonic activity. This approach extends to rocky exoplanets, exploring active tectonics as an indicator of habitability. It is concluded that the viscosity of Earth’s mantle self-regulates with temperature, minimizing the initial temperature’s impact on thermal models. In addition to vigorous convection, characterized by the Rayleigh number, other influences such as climate and the presence of water affect active plate tectonics. Currently, Earth is cooling primarily due to the decrease in heat production from radioactive decay. As a result of this cooling, it is estimated that plate tectonics will continue for approximately 6.4 billion years. Cooling efficiency influences thermal evolution, suggesting planets like Mars could evolve similarly to Earth under a lower cooling efficiency. Furthermore, plate tectonics is highlighted as one among several possible tectonic regimes, questioning whether terrestrial habitability is an exception to natural conditions, which generally lead to inhabitability.