Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Generation of entangled matter qubits in two opposing parabolic mirrors

dc.contributor.authorTrautmann, N.
dc.contributor.authorBernád, J. Z.
dc.contributor.authorSondermann, M.
dc.contributor.authorAlber, G.
dc.contributor.authorSánchez Soto, Luis Lorenzo
dc.contributor.authorLeuchs, Gerd
dc.date.accessioned2023-06-19T13:29:48Z
dc.date.available2023-06-19T13:29:48Z
dc.date.issued2014
dc.description©2014 American Physical Society. N.T., J.Z.B., and G.A. acknowledge support by the BMBF Project Q.com and CASED III. M.S. and G.L. are grateful for the financial support of the European Research Council under the Advanced Grant PACART. Finally, L.L.S.S. acknowledges support from the Spanish MINECO (Grant No. FIS2011- 26786).
dc.description.abstractWe propose a scheme for the remote preparation of entangled matter qubits in free space. For this purpose, a setup of two opposing parabolic mirrors is considered, each one with a single ion trapped at its focus. To get the required entanglement in this extreme multimode scenario, we take advantage of the spontaneous decay, which is usually considered as an apparent nuisance. Using semiclassical methods, we derive an efficient photon-path representation to deal with this problem. We also present a thorough examination of the experimental feasibility of the scheme. The vulnerabilities arising in realistic implementations reduce the success probability, but leave the fidelity of the generated state unaltered. Our proposal thus allows for the generation of high-fidelity entangled matter qubits with high rate.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Research Council under the Advanced Grant PACART
dc.description.sponsorshipSpanish MINECO
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29116
dc.identifier.doi10.1103/PhysRevA.90.063814
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.90.063814
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33868
dc.journal.titlePhysical review A
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2011- 26786
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleGeneration of entangled matter qubits in two opposing parabolic mirrors
dc.typejournal article
dc.volume.number90
dcterms.references[1] M. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). [2] H. J. Kimble, Nature (London) 453, 1023 (2008). [3] S. Olmschenk, D. Matsukevich, P. Maunz, D. Hayes, L. M. Duan, and C. Monroe, Science 323, 486 (2009). [4] J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, and H. Weinfurter, Science 337, 72 (2012). [5] S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe, Nature (London) 484, 195 (2012). [6] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. Blok, L. Robledo, T. Taminiau, M. Markham, D. Twitchen, L. Childress, and R. Hanson, Nature (London) 497, 86 (2013). [7] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002). [8] J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, Opt. Express 17, 11440 (2009). [9] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. F ürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, Nat. Phys. 3, 481 (2007). [10] R. Maiwald, A. Golla, M. Fischer, M. Bader, S. Heugel, B. Chalopin, M. Sondermann, and G. Leuchs, Phys. Rev. A 86, 043431 (2012). [11] G. Leuchs and M. Sondermann, J. Mod. Opt. 60, 36 (2013). [12] M. Fischer, M. Bader, R. Maiwald, A. Golla, M. Sondermann, and G. Leuchs, Appl. Phys. B 117, 797 (2014). [13] D. Moehring, P. Maunz, S. Olmschenk, K. Younge, D. Matsukevich, L. M. Duan, and C. Monroe, Nature (London) 449, 68 (2007). [14] G. Alber, J. Z. Bernád, M. Stobinska, L. L. Sánchez Soto, and G. Leuchs, Phys. Rev. A 88, 023825 (2013). [15] P. W. Milonni and P. L. Knight, Phys. Rev. A 10, 1096 (1974). [16] M. Berry and K. Mount, Rep. Prog. Phys. 35, 315 (1972). [17] V. Maslov and M. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics (Reidel, Dordrecht, 1981). [18] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. A 76, 052314 (2007). [19] M. Stobinska, G. Alber, and G. Leuchs, Europhys. Lett. 86, 14007 (2009). [20] A. Rakić, A. Djuriśić, J. Elazar, and M. Majewski, Appl. Opt. 37, 5271 (1998). [21] M. Sondermann, N. Lindlein, and G. Leuchs, arXiv:0811.2098. [22] M. Lieb, Opt. Express 8, 458 (2001). [23] G. Leuchs, K. Mantel, A. Berger, H. Konermann, M. Sondermann, U. Peschel, N. Lindlein, and J. Schwider, Appl. Opt. 47, 5570 (2008). [24] A. April, B. Pierrick, and P. Michel, Opt. Express 19, 9201 (2011). [25] M. Sondermann and G. Leuchs, J. Eur. Opt. Soc. Rap. Public. 8, 13502 (2013). [26] J. Bergou, J. Mod. Opt. 57, 160 (2010). [27] S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, Phys. Rev. A 80, 022502 (2009). [ 28] W. C. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. N. Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. Lett. 105, 090502 (2010). [29] J. J. McLoughlin, A. H. Nizamani, J. D. Siverns, R. C. Sterling, M. D. Hughes, B. Lekitsch, B. Stein, S. Weidt, and W. K. Hensinger, Phys. Rev. A 83, 013406 (2011).
dspace.entity.typePublication
relation.isAuthorOfPublication88b797ff-cbd7-4498-a9c7-4e39f4fa4776
relation.isAuthorOfPublication.latestForDiscovery88b797ff-cbd7-4498-a9c7-4e39f4fa4776

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevA.90.063814.pdf
Size:
470.73 KB
Format:
Adobe Portable Document Format

Collections