Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Nonamphicheiral codimension 2 knots

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorGonzález Acuña, Francisco Javier
dc.date.accessioned2023-06-21T02:02:54Z
dc.date.available2023-06-21T02:02:54Z
dc.date.issued1980-02-01
dc.description.abstractAn n-knot (Sn+2,Sn) is said to be amphicheiral if there is an orientation-reversing autohomeomorphism of Sn+2 which leaves Sn invariant as a set. An n-knot is said to be invertible if there is an orientation-preserving autohomeomorphism of Sn+2 whose restriction to Sn is an orientation-reversing autohomeomorphism of Sn. The authors prove that for any integer n there are smooth n-knots which are neither amphicheiral nor invertible. Actually, they prove it for n≥2, referring to the paper of H. F. Trotter [Topology 2 (1963), 275–280; errata, MR 30, p. 1205] for the case n=1. The methods employed are mainly algebraic, involving for example the duality pairings of R. C. Blanchfield and J. Levine, and in most cases the work of previous authors is used to guarantee the existence of knots with the desired algebraic properties.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17243
dc.identifier.doi10.4153/CJM-1980-014-x
dc.identifier.issn0008-414X
dc.identifier.officialurlhttp://cms.math.ca/10.4153/CJM-1980-014-x
dc.identifier.relatedurlhttp://cms.math.ca/cjm/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64709
dc.issue.number1
dc.journal.titleCanadian Journal of Mathematics-Journal Canadien de Mathématiques
dc.language.isoeng
dc.page.final194
dc.page.initial185
dc.publisherCanadian Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.8
dc.subject.keywordknots of codimension which are neither amphicheiral nor invertible
dc.subject.keywordnon- symmetric Alexander polynomial
dc.subject.keywordknot cobordism group
dc.subject.keywordfibred knot
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleNonamphicheiral codimension 2 knots
dc.typejournal article
dc.volume.number32
dcterms.referencesS. Akbulut and R. Kirby, An exotic involution of S 4 (preprint). E. Becerra, Simple homotopy equivalent knot complements, Ph.D. Thesis (1976), Instituto de Matemâticas de la U.N.A.M., Mexico. S. S. Cappell, Superspinning and knot complement, in Topology of manifolds (Markham Publishing Co., 1970), 358-383. S. S. Cappell and J. L. Shaneson, Topological knots and knot cobordism, Topology 12 (1973), 33-40. M. M. Cohen, A course in simple homotopy theory, Springer (1970). R. H. Crowell, The Group G'/G" of a knot group, Duke Math. J. 30 (1963), 349-354. M . S. Farber, Linking coefficients and two dimensional knots, Soviet Math. Dokl. 16 (1975), 647-650. R. H. Fox, Some problems in knot theory, in Topology of o-manifolds and related topics (Prentice Hall, N.J., 1962), 168-176. L. Fuchs, Infinite abelian groups (Academic Press 86,1970). P. J. Hilton and S. Wylie, Homology theory (Cambridge University Press, 1960). C. Kearton, Noninvertible knots of codimension 2, Proc. Am. Math. Soc. 40 (1973), 274-276. M. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 03 (1965), 225-271. On higher dimensional knots, Differential and Combinatorial Topology, A symposium in honor of Marston Morse, Princeton Univ. Press (1965), 105-119. R. C. Kirby and L. C. Siebenmann, Codimension two locally flat imbeddings, Notices Amer.Math. Soc. 18 (1971), 983. E. Landau, Vorlesungen uber Zahlentheorie, Verlag bon S. Hirzel Leipzig (1974). J. Levine, Knot cobordism groups in codimension two, Comm. Math. Helv. 44 (1969), 229-244. Knot modules, Annals of Math Studies 84 and Trans. Amer. Math. Soc. 229 (1977), 1-50. D. W. Sumners, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24(1970), 229-240. Polynomial invariants and the integral homology of coverings of knots and links, Inventiones Math. 15 (1972), 78-90. H. F. Trotter Non-invertible knots exist, Topology 2 (1963), 275-280. B. L. Van der Waerden, Moderne algebra (Springer, 1950). C. T. C. Wall, Classification problems in differential topology—VI, Topology 6 (1967), 273-296. T. Yanagawa, On ribbon 2-knots, Osaka j . Math. 6 (1969), 447-464. E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos21.pdf
Size:
842.27 KB
Format:
Adobe Portable Document Format

Collections