On a Nash curve selection lemma through finitely many points
| dc.contributor.author | Fernando Galván, José Francisco | |
| dc.date.accessioned | 2025-07-10T15:42:09Z | |
| dc.date.available | 2025-07-10T15:42:09Z | |
| dc.date.issued | 2025 | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación (España) | |
| dc.description.status | pub | |
| dc.identifier.doi | 10.4171/RMI/1554 | |
| dc.identifier.officialurl | https://doi.org/10.4171/RMI/1554 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/122415 | |
| dc.issue.number | 4 | |
| dc.journal.title | Revista Matemática Iberoamericana | |
| dc.language.iso | eng | |
| dc.page.final | 1252 | |
| dc.page.initial | 1201 | |
| dc.publisher | EMS | |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122752NB-I00/ES/ESTRUCTURAS ALGEBRAICAS, ANALITICAS Y O-MINIMALES/ | |
| dc.rights | Attribution 4.0 International | en |
| dc.rights.accessRights | open access | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.keyword | Semialgebraic sets connected by analytic paths | |
| dc.subject.keyword | Stone–Weierstrass’ approximation | |
| dc.subject.keyword | Bernstein’s polynomials | |
| dc.subject.keyword | Nash paths | |
| dc.subject.keyword | Polynomial paths | |
| dc.subject.keyword | Degree of a polynomial path | |
| dc.subject.ucm | Matemáticas (Matemáticas) | |
| dc.subject.unesco | 12 Matemáticas | |
| dc.title | On a Nash curve selection lemma through finitely many points | |
| dc.type | journal article | |
| dc.volume.number | 41 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 499732d5-c130-4ea6-8541-c4ec934da408 | |
| relation.isAuthorOfPublication.latestForDiscovery | 499732d5-c130-4ea6-8541-c4ec934da408 |
Download
Original bundle
1 - 1 of 1


