Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Military Applications of Machine Learning: A Bibliometric Perspective

dc.contributor.authorGalán Hernández, José Javier
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorLaTorre, Antonio
dc.date.accessioned2025-01-15T12:01:29Z
dc.date.available2025-01-15T12:01:29Z
dc.date.issued2022
dc.description.abstractThe military environment generates a large amount of data of great importance, which makes necessary the use of machine learning for its processing. Its ability to learn and predict possible scenarios by analyzing the huge volume of information generated provides automatic learning and decision support. This paper aims to present a model of a machine learning architecture applied to a military organization, carried out and supported by a bibliometric study applied to an architecture model of a nonmilitary organization. For this purpose, a bibliometric analysis up to the year 2021 was carried out, making a strategic diagram and interpreting the results. The information used has been extracted from one of the main databases widely accepted by the scientific community, ISI WoS. No direct military sources were used. This work is divided into five parts: the study of previous research related to machine learning in the military world; the explanation of our research methodology using the SciMat, Excel and VosViewer tools; the use of this methodology based on data mining, preprocessing, cluster normalization, a strategic diagram and the analysis of its results to investigate machine learning in the military context; based on these results, a conceptual architecture of the practical use of ML in the military context is drawn up; and, finally, we present the conclusions, where we will see the most important areas and the latest advances in machine learning applied, in this case, to a military environment, to analyze a large set of data, providing utility, machine learning and decision support.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationGalán, J.J.; Carrasco, R.A.; LaTorre, A. Military Applications of Machine Learning: A Bibliometric Perspective. Mathematics 2022, 10, 1397. https://doi.org/10.3390/ math10091397
dc.identifier.doi10.3390/ math10091397
dc.identifier.officialurlhttps://doi.org/10.3390/ math10091397
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114437
dc.issue.number1397
dc.journal.titleMathematics
dc.language.isoeng
dc.publisherMDPI
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu024.5:519.23
dc.subject.cdu355
dc.subject.cdu004.8
dc.subject.keywordMachine learning
dc.subject.keywordMilitary
dc.subject.keywordArtificial intelligence
dc.subject.keywordBibliometric analysis
dc.subject.ucmBibliometría
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmCiencia militar
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco5701.02 Documentación Automatizada
dc.titleMilitary Applications of Machine Learning: A Bibliometric Perspective
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublicationf11206d7-9926-4f84-a47e-776cd56cea85
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication.latestForDiscoveryf11206d7-9926-4f84-a47e-776cd56cea85

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AJCR-Q1-15-2022-MATH-oficial.pdf
Size:
9.08 MB
Format:
Adobe Portable Document Format

Collections