Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On integral quadratic forms having commensurable groups of automorphisms

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T03:48:56Z
dc.date.available2023-06-20T03:48:56Z
dc.date.issued2013
dc.descriptionAddendum to ‘‘On integral quadratic forms having commensurable groups of automorphisms’’, disponible en http://projecteuclid.org/euclid.hmj/1419619751
dc.description.abstractWe introduce two notions of equivalence for rational quadratic forms. Two n-ary rational quadratic forms are commensurable if they possess commensurable groups of automorphisms up to isometry. Two n-ary rational quadratic forms F and G are projectivelly equivalent if there are nonzero rational numbers r and s such that rF and sG are rationally equivalent. It is shown that if F\ and G\ have Sylvester signature {−,+,+,...,+} then F\ and G\ are commensurable if and only if they are projectivelly equivalent. The main objective of this paper is to obtain a complete system of (computable) numerical invariants of rational n-ary quadratic forms up to projective equivalence. These invariants are a variation of Conway's p-excesses. Here the cases n odd and n even are surprisingly different. The paper ends with some examples
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29194
dc.identifier.issn0018-2079
dc.identifier.officialurlhttp://projecteuclid.org/euclid.hmj/1389102581
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44490
dc.issue.number3
dc.journal.titleHiroshima mathematical journal
dc.language.isoeng
dc.page.final441
dc.page.initial371
dc.publisherHiroshima University. Faculty of Science
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.keyword11E04: Quadratic forms over general fields 11E20: General ternary and quaternary quadratic forms
dc.subject.keywordforms of more than two variables 57M25: Knots and links in S3 {For higher dimensions
dc.subject.keywordsee 57Q45} 57M50: Geometric structures on low-dimensional manifolds 57M60: Group actions in low dimensions
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn integral quadratic forms having commensurable groups of automorphisms
dc.typejournal article
dc.volume.number43
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
1389102581
Size:
34.79 KB
Format:
Unknown data format
Loading...
Thumbnail Image
Name:
1419619751
Size:
26.49 KB
Format:
Unknown data format

Collections