On integral quadratic forms having commensurable groups of automorphisms

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T03:48:56Z
dc.date.available2023-06-20T03:48:56Z
dc.date.issued2013
dc.descriptionAddendum to ‘‘On integral quadratic forms having commensurable groups of automorphisms’’, disponible en http://projecteuclid.org/euclid.hmj/1419619751
dc.description.abstractWe introduce two notions of equivalence for rational quadratic forms. Two n-ary rational quadratic forms are commensurable if they possess commensurable groups of automorphisms up to isometry. Two n-ary rational quadratic forms F and G are projectivelly equivalent if there are nonzero rational numbers r and s such that rF and sG are rationally equivalent. It is shown that if F\ and G\ have Sylvester signature {−,+,+,...,+} then F\ and G\ are commensurable if and only if they are projectivelly equivalent. The main objective of this paper is to obtain a complete system of (computable) numerical invariants of rational n-ary quadratic forms up to projective equivalence. These invariants are a variation of Conway's p-excesses. Here the cases n odd and n even are surprisingly different. The paper ends with some examples
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29194
dc.identifier.issn0018-2079
dc.identifier.officialurlhttp://projecteuclid.org/euclid.hmj/1389102581
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44490
dc.issue.number3
dc.journal.titleHiroshima mathematical journal
dc.language.isoeng
dc.page.final441
dc.page.initial371
dc.publisherHiroshima University. Faculty of Science
dc.rights.accessRightsopen access
dc.subject.cdu515.1
dc.subject.keyword11E04: Quadratic forms over general fields 11E20: General ternary and quaternary quadratic forms
dc.subject.keywordforms of more than two variables 57M25: Knots and links in S3 {For higher dimensions
dc.subject.keywordsee 57Q45} 57M50: Geometric structures on low-dimensional manifolds 57M60: Group actions in low dimensions
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn integral quadratic forms having commensurable groups of automorphisms
dc.typejournal article
dc.volume.number43
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
1389102581
Size:
34.79 KB
Format:
Unknown data format
Loading...
Thumbnail Image
Name:
1419619751
Size:
26.49 KB
Format:
Unknown data format

Collections