Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Homogeneous Structures on Real and Complex Hyperbolic Spaces

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorMartínez Gadea, Pedro
dc.contributor.authorSwann, Andrew
dc.date.accessioned2023-06-20T10:35:45Z
dc.date.available2023-06-20T10:35:45Z
dc.date.issued2009
dc.description.abstractThe connected groups acting by isometries on either the real or the complex hyperbolic spaces are determined. A Lie-theoretic description of the homogeneous Riemannian, respectively Kähler, structures of linear type on these spaces is then found. On both spaces, examples that are not of linear type are given.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21797
dc.identifier.issn0019-2082
dc.identifier.officialurlhttp://0-projecteuclid.org.cisne.sim.ucm.es/DPubS/Repository/1.0/Disseminate?handle=euclid.ijm/1266934792&view=body&content-type=pdfview_1
dc.identifier.relatedurlhttp://ijm.math.illinois.edu/
dc.identifier.relatedurlhttp://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ijm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50704
dc.issue.number2
dc.journal.titleIllinois Journal of Mathematics
dc.language.isoeng
dc.page.final574
dc.page.initial561
dc.publisherUniversity of Illinois
dc.rights.accessRightsrestricted access
dc.subject.cdu514.762
dc.subject.keywordHomogeneous Structures
dc.subject.keywordHyperbolic Spaces
dc.subject.keywordIsometry Group
dc.subject.keywordIwasawa Decomposition
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleHomogeneous Structures on Real and Complex Hyperbolic Spaces
dc.typejournal article
dc.volume.number53
dcterms.referencesE. Abbena and S. Garbiero, Almost Hermitian homogeneous structures, Proc. Edinburgh Math. Soc. (2) 31 (1988), no. 3, 375-395. W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647-669. L. Bérard-Bergery, Les espaces homogènes riemanniens de dimension 4, Riemannian geometry in dimension 4 (Paris, 1978/1979), Textes Math., vol. 3, CEDIC, Paris, 1981, pp. 40-60. A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 10, Springer, Berlin, Heidelberg and New York, 1987. M. Castrillón López, P. M. Gadea, and A. F. Swann, Homogeneous quaternionic Kähler structures and quaternionic hyperbolic space, Transform. Groups 11(2006),no. 4, 575-608. P. M. Gadea, A. Montesinos Amilibia, and J. Muñoz Masqué, Characterizing the complex hyperbolic space by Kähler homogeneous structures, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 1, 87-94. V. V. Gorbatsevich, A. L. Onishchik, and E. B. Vinberg, Structure of Lie groups and Lie algebras, Lie groups and Lie algebras III (A. L. Onishchik and E. B.Vinberg, eds.), Encyclopaedia of Mathematical Sciences, vol. 41, Springer-Verlag, Berlin, 1994, pp. 1-248. M. Goto and H.-C. Wang, Non-discrete uniform subgroups of semisimple Lie groups, Math. Ann. 198 (1972), 259-286. S. Kobayashi and K. Nomizu, Foundations of diferential geometry. Volume II, Tracts in Mathematics, Number 15, Wiley, New York, 1969. K. Nomizu, Invariant ane connections on homogeneous spaces, Amer. J. Math.76 (1954), 33-65. A. M. Pastore, On the homogeneous Riemannian structures of type T1©T3, Geom. Dedicata 30 (1989), no. 2, 235-246. Canonical connections with an algebraic curvature tensor field on naturally reductive spaces, Geom. Dedicata 43 (1992), no. 3, 351-361. Homogeneous representations of the hyperbolic spaces related to homogeneous structures of class T1 © T3, Rend. Mat. Appl. (7) 12 (1992), no. 2, 445-453. A. M. Pastore and F. Verroca, Some results on the homogeneous Riemannian structures of class T1 © T2, Rend. Mat. Appl. (7) 11 (1991), no. 1, 105-121. K. Sekigawa, Notes on homogeneous almost Hermitian manifolds, Hokkaido Math.J. 7 (1978), no. 2, 206-213. F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds,London Mathematical Society Lecture Note Series, vol. 83, Cambridge University Press,Cambridge, 1983. D. Witte, Cocompact subgroups of semisimple Lie groups, Lie algebras and related topics. Proceedings of the conference held at the University of Wisconsin,Madison, Wisconsin, May 22-June 1, 1988 (Georgia Benkart and J. Marshall Osborn, eds.), Contemporary Mathematics, vol. 110, American Mathematical Society, Providence, RI, 1990, pp. 309-313.
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
castrillon111pdf.pdf
Size:
221.13 KB
Format:
Adobe Portable Document Format

Collections