Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Ergodic solenoidal homology. II. Density of ergodic solenoids.

dc.contributor.authorMuñoz, Vicente
dc.contributor.authorPérez Marco, Ricardo
dc.date.accessioned2023-06-20T10:34:14Z
dc.date.available2023-06-20T10:34:14Z
dc.date.issued2009
dc.descriptionSpecial Issue in Honor of the 100th Anniversary of S.M. Ulam
dc.description.abstractA measured solenoid is a laminated space endowed with a tranversal measure invariant by holonomy. A measured solenoid immersed in a smooth manifold produces a closed current (known as a generalized Ruelle-Sullivan current). Uniquely ergodic solenoids are those for which there is a unique (up to scalars) transversal measure. It is known that for any smooth manifold, any real homology class is represented by a uniquely ergodic solenoid. In this paper, we prove that the currents associated to uniquely ergodic solenoids are dense in the space of closed currents,therefore proving the abundance of such objects.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20884
dc.identifier.issn1449-5910
dc.identifier.officialurlhttp://ajmaa.org/searchroot/files/pdf/v6n1/v6i1p11.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50579
dc.issue.number1
dc.journal.titleThe Australian Journal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final8
dc.page.initial1
dc.publisherAustral Internet Publishing
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordRuelle-Sullivan current
dc.subject.keywordSolenoid
dc.subject.keywordErgodic theory
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleErgodic solenoidal homology. II. Density of ergodic solenoids.
dc.typejournal article
dc.volume.number6
dcterms.referencesS. HURDER and Y. MITSUMATSU, The intersection product of transverse invariant measures,Indiana Univ. Math. J., 40 (1991), 1169–1183. V. MUÑOZ and R. PÉREZ-MARCO, Ergodic solenoidal homology I: Realization theorem, Preprint 2007. D. RUELLE and D. SULLIVAN, Currents, flows and diffeomorphisms, Topology, 14 (1975), 319–327. S. SCHWARTZMAN, Asymptotic cycles, Ann. of Math. (2), 66 (1957), 270–284.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz25.pdf
Size:
244.54 KB
Format:
Adobe Portable Document Format

Collections