Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On minimal Heegaard splittings

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorBirman, Joan S.
dc.date.accessioned2023-06-21T02:02:50Z
dc.date.available2023-06-21T02:02:50Z
dc.date.issued1980
dc.description.abstractThis paper deals with Heegaard splittings and Heegaard diagrams (denoted H-diagrams). Two interesting examples are given which shed light on certain questions about "minimality'' of H-diagrams. An H-diagram is a quadruple (M,F,v,w), where M is a closed orientable 3-manifold, F is a surface embedded in M that separates it into two handlebodies V and W, and v and w are complete systems of meridian discs for V and W. The complexity of the H-diagram, c(M,F,v,w), is the cardinality of ∂v∩∂w. An H-diagram (M,F,v,w) is pseudominimal if c(M,F,v,w)≤c(M,F,v,w′) for all w′ and c(M,F,v,w)≤c(M,F,v′,w) for all v′. It is minimal if c(M,F,v,w)≤c(M,F,v′,w′) for all v′ and w′. In the first example, two H-diagrams of the lens space M=L(7,2) are given with different complexity. This shows that pseudominimality does not imply minimality. In this example, the H-diagram has a pair of cancelling handles. F. Waldhausen asked the question: "In an H-diagram which is pseudominimal but not minimal is there always a pair of cancelling handles?'' The second example shows that either (a) there is a 3-manifold with two minimal H-splittings of different genus or (b) there is an H-diagram that is pseudominimal but not minimal and has no pair of cancelling handles. The authors conjecture that (a) holds. This is an enlightening paper to read for anyone wishing to learn some of the methods and techniques of Heegaard splittings.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNational Science Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17215
dc.identifier.issn0026-2285
dc.identifier.officialurlhttp://www.math.columbia.edu/~jb/b-montesinos-min-HS.pdf
dc.identifier.relatedurlhttp://www.math.columbia.edu/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64704
dc.issue.number1
dc.journal.titleMichigan Mathematical Journal
dc.language.isoeng
dc.page.final57
dc.page.initial47
dc.publisherMichigan Mathematical Journal
dc.relation.projectID76-0823
dc.rights.accessRightsrestricted access
dc.subject.cdu515.16
dc.subject.keywordminimal Heegaard splittings
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn minimal Heegaard splittings
dc.typejournal article
dc.volume.number27
dcterms.referencesW. Haken, Various aspects of the three-dimensional Poincaré problem. Topology ofManifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), pp. 140-152. Markham, Chicago, 111., 1970. P. J. Higgins and R. C. Lyndon, Equivalence of elements under automorphisms of a free group. J. London Math. Soc. (2) 8 (1974), 254-258. J. M. Montesinos, Surgery on links and double branched covers of S3. Knots, groups and 3-manifolds (Papers dedicated to the memory of R. H. Fox), pp. 227-259. Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975. H. Poincaré, Cinquieme complément a l'analysis situs. Rend. Circo Mat. Palermo 18 (1904), 45-110. F. Waldhausen, Heegaard-Zerlegungen der 3-Sphiire. Topology 7 (1968), 195-203. F. Waldhausen, Some problems on 3-manifolds. Proceedings of Symposia in Pure Mathematics, 32 (1978), 313-322. J. H. C. Whitehead, On certain sets of elements in a free group. Proc. London Math. Soc., 11. s. 41 (1936), 45-56. H. Zieschang, On simple systems of paths on complete pretzels, Amer. Math. Soco Transl. (2) 92 (1970), 127-137.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos19.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format

Collections