Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives

dc.contributor.authorCuervo Rodríguez, María Rocío
dc.contributor.authorMuñoz-Bonilla, A.
dc.contributor.authorLópez-Fabal, F.
dc.contributor.authorFernández-García, M.
dc.date.accessioned2023-06-17T09:09:10Z
dc.date.available2023-06-17T09:09:10Z
dc.date.issued2020-04-22
dc.description.abstractA series of well-defined antimicrobial polymers composed of comonomers bearing thiazole ring (2-(((2-(4-methylthiazol-5-yl)ethoxy)carbonyl)oxy)ethyl methacrylate monomer (MTZ)) and non-hemotoxic poly(ethylene glycol) side chains (poly(ethylene glycol) methyl ether methacrylate (PEGMA)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. By post-polymerization functionalization strategy, polymers were quaternized with either butyl or octyl iodides to result in cationic amphiphilic copolymers incorporating thiazolium groups, thus with variable hydrophobic/hydrophilic balance associated to the length of the alkylating agent. Likewise, the molar percentage of PEGMA was modulated in the copolymers, also affecting the amphiphilicity. The antimicrobial activities of these cationic polymers were determined against Gram-positive and Gram-negative bacteria and fungi. Minimum inhibitory concentration (MIC) was found to be dependent on both length of the alkyl hydrophobic chain and the content of PEGMA in the copolymers. More hydrophobic octylated copolymers were found to be more effective against all tested microorganisms. The incorporation of non-ionic hydrophilic units, PEGMA, reduces the hydrophobicity of the system and the activity is markedly reduced. This effect is dramatic in the case of butylated copolymers, in which the hydrophobic/hydrophilic balance is highly affected. The hemolytic properties of polymers analyzed against human red blood cells were greatly affected by the hydrophobic/hydrophilic balance of the copolymers and the content of PEGMA, which drastically reduces the hemotoxicity. The copolymers containing longer hydrophobic chain, octyl, are much more hemotoxic than their corresponding butylated copolymers.en
dc.description.departmentDepto. de Química Orgánica
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipFondo Europeo de Desarrollo Regional
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/66778
dc.identifier.citationR. Cuervo-Rodríguez, A. Muñoz-Bonilla, F. López-Fabal, M. Fernández-García. Hemolytic and antimicrobial activities of a series of cationic amphiphilic copolymers comprised of same centered comonomers with thiazole moieties and polyethylene glycol derivatives. Polymers. 2020 Apr 22;12: 972-84
dc.identifier.doi10.3390/polym12040972
dc.identifier.issn2073-4360
dc.identifier.officialurlhttps://doi.org/10.3390/polym12040972
dc.identifier.relatedurlhttps://www.mdpi.com/2073-4360/12/4/972
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8284
dc.issue.number4
dc.journal.titlePolymers
dc.language.isoeng
dc.page.final984
dc.page.initial972
dc.publisherMDPI
dc.relation.projectIDMAT2016-78437-R
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordAntimicrobial polymers
dc.subject.keywordAmphiphilic polymers
dc.subject.keywordHemolytic activity
dc.subject.keywordHemocompatibility
dc.subject.keywordPEGMA
dc.subject.keywordThiazole
dc.subject.ucmQuímica orgánica (Química)
dc.subject.unesco2306 Química Orgánica
dc.subject.unesco2304 Química Macromolecular
dc.titleHemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivativesen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number12
dcterms.references1. Ergene, C.; Yasuhara, K.; Palermo, E.F. Biomimetic antimicrobial polymers: Recent advances in molecular design. Polym. Chem. 2018, 9, 2407–2427. [CrossRef] 2. Radzishevsky, I.S.; Rotem, S.; Bourdetsky, D.; Navon-Venezia, S.; Carmeli, Y.; Mor, A. Improved antimicrobial peptides based on acyl-lysine oligomers. Nat. Biotechnol. 2007, 25, 657–659. [CrossRef] 3. Shen, W.; He, P.; Xiao, C.; Chen, X. From antimicrobial peptides to antimicrobial poly(alpha-amino acid)s. Adv. Healthc. Mater. 2018, 7, e1800354. [CrossRef] 4. Konai, M.M.; Bhattacharjee, B.; Ghosh, S.; Haldar, J. Recent progress in polymer research to tackle infections and antimicrobial resistance. Biomacromolecules 2018, 19, 1888–1917. [CrossRef] 5. Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339. [CrossRef] 6. Engler, A.C.; Wiradharma, N.; Ong, Z.Y.; Coady, D.J.; Hedrick, J.L.; Yang, Y.-Y. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today 2012, 7, 201–222. [CrossRef] 7. Kashef, N.; Huang, Y.Y.; Hamblin, M.R. Advances in antimicrobial photodynamic inactivation at the nanoscale. Nanophotonics 2017, 6, 853–879. [CrossRef] 8. Brown, L.; Wolf, J.M.; Prados-Rosales, R.; Casadevall, A. Through the wall: Extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 2015, 13, 620–630. [CrossRef] 9. Lienkamp, K.; Kumar, K.N.; Som, A.; Nusslein, K.; Tew, G.N. “Doubly selective” antimicrobial polymers: How do they differentiate between bacteria? Chemistry 2009, 15, 11710–11714. [CrossRef] 10. Rahman, M.A.; Bam, M.; Luat, E.; Jui, M.S.; Ganewatta, M.S.; Shokfai, T.; Nagarkatti, M.; Decho, A.W.; Tang, C. Macromolecular-clustered facial amphiphilic antimicrobials. Nat. Commun. 2018, 9, 5231. [CrossRef] 11. Rahman, M.A.; Jui, M.S.; Bam, M.; Cha, Y.; Luat, E.; Alabresm, A.; Nagarkatti, M.; Decho, A.W.; Tang, C. Facial amphiphilicity-induced polymer nanostructures for antimicrobial applications. ACS Appl. Mater. Interfaces 2020. [CrossRef] [PubMed] 12. Cuervo-Rodríguez, R.; Muñoz-Bonilla, A.; Araujo, J.; Echeverría, C.; Fernández-García, M. Influence of side chain structure on the thermal and antimicrobial properties of cationic methacrylic polymers. Eur. Polym. J. 2019, 117, 86–93. [CrossRef] 13. Pranantyo, D.; Xu, L.Q.; Hou, Z.; Kang, E.-T.; Chan-Park, M.B. Increasing bacterial affinity and cytocompatibility with four-arm star glycopolymers and antimicrobial α-polylysine. Polym. Chem. 2017, 8, 3364–3373. [CrossRef] 14. Fukushima, K.; Kishi, K.; Saito, K.; Takakuwa, K.; Hakozaki, S.; Yano, S. Modulating bioactivities of primary ammonium-tagged antimicrobial aliphatic polycarbonates by varying length, sequence and hydrophobic side chain structure. Biomater. Sci. 2019, 7, 2288–2296. [CrossRef] 15. Takahashi, H.; Caputo, G.A.; Vemparala, S.; Kuroda, K. Synthetic random copolymers as a molecular platform to mimic host-defense antimicrobial peptides. Bioconjug. Chem. 2017, 28, 1340–1350. [CrossRef] [PubMed] 16. Venkataraman, S.; Zhang, Y.; Liu, L.; Yang, Y.Y. Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials 2010, 31, 1751–1756. [CrossRef] 17. Punia, A.; Mancuso, A.; Banerjee, P.; Yang, N.-L. Nonhemolytic and antibacterial acrylic copolymers with hexamethyleneamine and poly(ethylene glycol) side chains. ACS Macro Lett. 2015, 4, 426–430. [CrossRef] 18. Uppu, D.S.; Akkapeddi, P.; Manjunath, G.B.; Yarlagadda, V.; Hoque, J.; Haldar, J. Polymers with tunable side-chain amphiphilicity as non-hemolytic antibacterial agents. Chem. Commun. (Camb.) 2013, 49, 9389–9391. [CrossRef] 19. Zhu, Z.; Jeong, G.; Kim, S.-J.; Gadwal, I.; Choe, Y.; Bang, J.; Oh, M.-K.; Khan, A.; Rao, J. Balancing antimicrobial performance with hemocompatibility in amphiphilic homopolymers. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 2391–2396. [CrossRef] 20. Alvarez-Paino, M.; Munoz-Bonilla, A.; Lopez-Fabal, F.; Gomez-Garces, J.L.; Heuts, J.P.; Fernandez-Garcia, M. Effect of glycounits on the antimicrobial properties and toxicity behavior of polymers based on quaternized dmaema. Biomacromolecules 2015, 16, 295–303. [CrossRef] 21. Xu, Y.; Zhang, K.; Reghu, S.; Lin, Y.; Chan-Park, M.B.; Liu, X.W. Synthesis of antibacterial glycosylated polycaprolactones bearing imidazoliums with reduced hemolytic activity. Biomacromolecules 2019, 20, 949–958. [CrossRef] 22. Allison, B.C.; Applegate, B.M.; Youngblood, J.P. Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine. Biomacromolecules 2007, 8, 2995–2999. [CrossRef] 23. Ergene, C.; Palermo, E.F. Self-immolative polymers with potent and selective antibacterial activity by hydrophilic side chain grafting. J. Mater. Chem. B 2018, 6, 7217–7229. [CrossRef] 24. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-Ninth ed.; CLSI Document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. 25. Liu, G.; Qiu, Q.; An, Z. Development of thermosensitive copolymers of poly(2-methoxyethyl acrylate-co-poly(ethylene glycol) methyl ether acrylate) and their nanogels synthesized by raft dispersion polymerization in water. Polym. Chem. 2012, 3, 504–513. [CrossRef] 26. Palermo, E.F.; Sovadinova, I.; Kuroda, K. Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers. Biomacromolecules 2009, 10, 3098–3107. [CrossRef] 27. Phillips, D.J.; Harrison, J.; Richards, S.J.; Mitchell, D.E.; Tichauer, E.; Hubbard, A.T.M.; Guy, C.; Hands-Portman, I.; Fullam, E.; Gibson, M.I. Evaluation of the antimicrobial activity of cationic polymers against mycobacteria: Toward antitubercular macromolecules. Biomacromolecules 2017, 18, 1592–1599. [CrossRef] 28. Chiloeches, A.; Echeverría, C.; Cuervo-Rodríguez, R.; Plachà, D.; López-Fabal, F.; Fernández-García, M.; Muñoz-Bonilla, A. Adhesive antibacterial coatings based on copolymers bearing thiazolium cationic groups and catechol moieties as robust anchors. Prog. Org. Coat. 2019, 136, 105272. [CrossRef] 29. Guo, J.; Qin, J.; Ren, Y.; Wang, B.; Cui, H.; Ding, Y.; Mao, H.; Yan, F. Antibacterial activity of cationic polymers: Side-chain or main-chain type? Polym. Chem. 2018, 9, 4611–4616. [CrossRef] 30. Cerda-Cristerna, B.I.; Flores, H.; Pozos-Guillen, A.; Perez, E.; Sevrin, C.; Grandfils, C. Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (pdmaema)-based polymers. J. Control Release 2011, 153, 269–277. [CrossRef] 31. Lienkamp, K.; Tew, G.N. Synthetic mimics of antimicrobial peptides–a versatile ring-opening metathesis polymerization based platform for the synthesis of selective antibacterial and cell-penetrating polymers. Chemistry 2009, 15, 11784–11800. [CrossRef] 32. Punia, A.; Lee, K.; He, E.; Mukherjee, S.; Mancuso, A.; Banerjee, P.; Yang, N.L. Effect of relative arrangement of cationic and lipophilic moieties on hemolytic and antibacterial activities of pegylated polyacrylates. Int. J. Mol. Sci. 2015, 16, 23867–23880. [CrossRef] 33. Krumm, C.; Harmuth, S.; Hijazi, M.; Neugebauer, B.; Kampmann, A.L.; Geltenpoth, H.; Sickmann, A.; Tiller, J.C. Antimicrobial poly(2-methyloxazoline)s with bioswitchable activity through satellite group modification. Angew. Chem. Int. Ed. Engl. 2014, 53, 3830–3834. [CrossRef] 34. Kuroda, K.; Caputo, G.A. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip Rev. Nanomed. Nanobiotechnol. 2013, 5, 49–66. [CrossRef]
dspace.entity.typePublication
relation.isAuthorOfPublication20e2efec-e2bc-4739-b162-f542099fa52e
relation.isAuthorOfPublication.latestForDiscovery20e2efec-e2bc-4739-b162-f542099fa52e
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
polymers-12-00972.pdf
Size:
1.98 MB
Format:
Adobe Portable Document Format
Collections