Classification of kinematic and electromyographic signals associated with pathological tremor using machine and deep learning

dc.contributor.authorPascual Valdunciel, Alejandro
dc.contributor.authorLopo Martinez, Victor
dc.contributor.authorBeltran Carrero, Alberto J.
dc.contributor.authorSendra Arranz, Rafael
dc.contributor.authorGonzález Sánchez, Miguel
dc.contributor.authorPerez Sanchez, Javier Ricardo
dc.contributor.authorGrandas Pérez, Francisco Javier
dc.contributor.authorFarina, Dario
dc.contributor.authorPons, José L.
dc.contributor.authorOliveira Barroso, Filipe
dc.contributor.authorGutierrez, Álvaro
dc.date.accessioned2024-04-25T16:26:40Z
dc.date.available2024-04-25T16:26:40Z
dc.date.issued2023-01-05
dc.description2023 Descuento MDPI
dc.description.abstractPeripheral Electrical Stimulation (PES) of afferent pathways has received increased interest as a solution to reduce pathological tremors with minimal side effects. Closed-loop PES systems might present some advantages in reducing tremors, but further developments are required in order to reliably detect pathological tremors to accurately enable the stimulation only if a tremor is present. This study explores different machine learning (K-Nearest Neighbors, Random Forest and Support Vector Machines) and deep learning (Long Short-Term Memory neural networks) models in order to provide a binary (Tremor; No Tremor) classification of kinematic (angle displacement) and electromyography (EMG) signals recorded from patients diagnosed with essential tremors and healthy subjects. Three types of signal sequences without any feature extraction were used as inputs for the classifiers: kinematics (wrist flexion-extension angle), raw EMG and EMG envelopes from wrist flexor and extensor muscles. All the models showed high classification scores (Tremor vs. No Tremor) for the different input data modalities, ranging from 0.8 to 0.99 for the f(1) score. The LSTM models achieved 0.98 f(1) scores for the classification of raw EMG signals, showing high potential to detect tremors without any processed features or preliminary information. These models may be explored in real-time closed-loop PES strategies to detect tremors and enable stimulation with minimal signal processing steps.
dc.description.departmentDepto. de Medicina
dc.description.facultyFac. de Medicina
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.identifier.citationPascual-Valdunciel, A.; Lopo-Martínez, V.; Beltrán-Carrero, A.J.; Sendra-Arranz, R.; González-Sánchez, M.; Pérez-Sánchez, J.R.; Grandas, F.; Farina, D.; Pons, J.L.; Oliveira Barroso, F.; et al. Classification of Kinematic and Electromyographic Signals Associated with Pathological Tremor Using Machine and Deep Learning. Entropy 2023, 25, 114.
dc.identifier.doi10.3390/e25010114
dc.identifier.essn1099-4300
dc.identifier.officialurlhttps://doi.org/10.3390/e25010114
dc.identifier.relatedurlhttps://www.mdpi.com/1099-4300/25/1/114
dc.identifier.urihttps://hdl.handle.net/20.500.14352/103528
dc.issue.number1
dc.journal.titleEntropy
dc.language.isoeng
dc.page.final114-13
dc.page.initial114-1
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/779982/EU
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//TED2021-130174B-C32
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//IJC2020-044467-I
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu61
dc.subject.keywordMachine learning
dc.subject.keywordTremor
dc.subject.keywordLSTM
dc.subject.keywordElectrical stimulation
dc.subject.ucmMedicina
dc.subject.ucmNeurociencias (Medicina)
dc.subject.unesco3205.07 Neurología
dc.titleClassification of kinematic and electromyographic signals associated with pathological tremor using machine and deep learning
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number25
dspace.entity.typePublication
relation.isAuthorOfPublication78398b8a-f88e-4baf-838b-7a0146b9c6cf
relation.isAuthorOfPublication.latestForDiscovery78398b8a-f88e-4baf-838b-7a0146b9c6cf

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
entropy-25-00114.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format

Collections