Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A divisive hierarchical k-means based algorithm for image segmentation

dc.book.titleIntelligent Systems and Knowledge Engineering (ISKE), 2010 International Conference on
dc.contributor.authorMartín H., José Antonio
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorGómez González, Daniel
dc.date.accessioned2023-06-20T05:46:37Z
dc.date.available2023-06-20T05:46:37Z
dc.date.issued2010
dc.description.abstractIn this paper we present a divisive hierarchical method for the analysis and segmentation of visual images. The proposed method is based on the use of the k-means method embedded in a recursive algorithm to obtain a clustering at each node of the hierarchy. The recursive algorithm determines automatically at each node a good estimate of the parameter k (the number of clusters in the k-means algorithm) based on relevant statistics. We have made several experiments with different kinds of images obtaining encouraging results showing that the method can be used effectively not only for automatic image segmentation but also for image analysis and, even more, data mining.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28874
dc.identifier.citationH., M.J.A., Montero, J., Yanez, J., Gomez, D.: A divisive hierarchical k-means based algorithm for image segmentation. En: 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering. pp. 300-304. IEEE, Hangzhou (2010)
dc.identifier.doi10.1109/ISKE.2010.5680865
dc.identifier.isbn978-1-4244-6791-4
dc.identifier.officialurlhttps//doi.org/10.1109/ISKE.2010.5680865
dc.identifier.relatedurlhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5680865&abstractAccess=no&userType=inst
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45547
dc.language.isoeng
dc.page.final304
dc.page.initial300
dc.publication.placeHangzhou
dc.publisherIEEE
dc.rights.accessRightsrestricted access
dc.subject.cdu519.8
dc.subject.keywordAdaptive k-means
dc.subject.keywordComputer vision
dc.subject.keywordHierarchical clustering
dc.subject.keywordImage segmentation
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleA divisive hierarchical k-means based algorithm for image segmentationen
dc.typebook part
dcterms.referencesK. S. Fu and J. K. Mui, "A survey on image segmentation," Pattern Recognition, vol. 13, pp. 3-16, 1981, earliest survey of segmentation, mainly thresholding. R. M. Haralick and L. G. Shapiro, "Image segmentation techniques," Computer Vision, Graphics, and Image Processing, vol. 29, pp. 100-132, 1985. N. R. Pal and S. K. Pal, "A review on image segmentation techniques," Pattern Recognition, vol. 26, no. 9, pp. 1277-1294, 1993. D. Gómez, J. Montero, J. Yáñez, and C. Poidomanl, "A graph coloring approach for image segmentation," Omega, vol. 35, no. 2, pp. 173 -183, 2007. H. Zhang, J. E. Fritts, and S. A. Goldman, "Image segmentation evaluation: A survey of unsupervised methods," Computer Vision and Image Understanding, vol. 110, no. 2, pp. 260-280, May 2008. J. A. Hartigan, Clustering Algorithms. New York, NY, USA: John Wiley & Sons, Inc., 1975. J. Scoltock, "A survey of the literature of cluster analysis," The Computer Journal, vol. 25, no. 1, pp. 130-134, Feb. 1982. A. K. Jain, and R. C. Dubes, Algorithms for Clustering Data. Englewood Cliffs: Prentice Hall, 1988. L. Kaufman, Finding groups in data: an introduction to cluster analysis. New York: Wiley, 1990. F. Murtagh, "A survey of recent advances in hierarchical clustering algorithms," Comput. J, vol. 26, no. 4, pp. 354-359, 1983. P. Willet, "Recent trends in hierarchical document clustering: a criticial review," Information Processing and Management, vol. 24, pp. 577-597, 1988. J. S. Nevid, Psychology: Concepts and Applications, 2nd ed. Wadsworth Publishing, 2009. A. M. Triesman and gany Gelade, "A feature-integration theory of attention," ACM Computing Surveys Cognitive Psychology, vol. 12, pp. 97-136, 1980. W. Kohler, Gestalt psychology. New York: Liveright, 1929. J. B. McQueen, "Some methods of classification and analysis of multivariate observations," in Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, L. M. L. Cam and J. Neyman, Eds., 1967, pp. 281-297. J. A. Hartigan and M. A. Wong, "Algorithm. AS136. A K"-means clustering algorithm," Applied Statistics, vol. 28, pp. 100-108, 1979. J. A. Martin. H., M. Santos, and J. de Lope, "Orthogonal variant moments features in image analysis," Information Sciences, vol. 180, no. 6, pp. 846-860, March 2010. D. Gómez, J. Montero, and J. Yáñez, "A coloring fuzzy graph approach for image classification," Information Sciences, vol. 176, no. 24, pp. 3645-3657, 2006.
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero232.pdf
Size:
786.11 KB
Format:
Adobe Portable Document Format