Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Clustering multivariate functional data with the epigraph and hypograph indices: a case study on Madrid air quality

dc.contributor.authorPulido, Belén
dc.contributor.authorFranco Pereira, Alba María
dc.contributor.authorLillo Rodríguez, Rosa Elvira
dc.date.accessioned2025-06-02T14:31:18Z
dc.date.available2025-06-02T14:31:18Z
dc.date.issued2025
dc.description2025 Acuerdos transformativos CRUE
dc.description.abstractWith the rapid growth of data generation, advancements in functional data analysis have become essential, especially for approaches that handle multiple variables at the same time. This paper introduces a novel formulation of the epigraph and hypograph indices, along with their generalized expressions, specifically designed for multivariate functional data (MFD). These new definitions account for interrelationships between variables, enabling effective clustering of MFD based on the original data curves and their first two derivatives. The methodology developed here has been tested on simulated datasets, demonstrating strong performance compared to state-of-the-art methods. Its practical utility is further illustrated with two environmental datasets: the Canadian weather dataset and a 2023 air quality study in Madrid. These applications highlight the potential of the method as a great tool for analyzing complex environmental data, offering valuable insights for researchers and policymakers in climate and environmental research.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.statuspub
dc.identifier.doi10.1007/s00477-025-02986-2
dc.identifier.issn1436-3240
dc.identifier.issn1436-3259
dc.identifier.officialurlhttps://doi.org/10.1007/s00477-025-02986-2
dc.identifier.urihttps://hdl.handle.net/20.500.14352/120778
dc.journal.titleStochastic Environmental Research and Risk Assessment
dc.language.isoeng
dc.page.initial(25)
dc.publisherSpringer
dc.relation.projectIDPTA2020 018802-I
dc.relation.projectIDPDC2022-133359
dc.relation.projectIDPID2022-137243OB-I00
dc.relation.projectIDPID2022-137050NB-I00
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordEpigraph
dc.subject.keywordHypograph
dc.subject.keywordMultivariate functional data
dc.subject.keywordClustering
dc.subject.keywordEHyClus
dc.subject.keywordEnvironmental data analysis
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209.03 Análisis de Datos
dc.titleClustering multivariate functional data with the epigraph and hypograph indices: a case study on Madrid air quality
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationef58bfde-9aa6-4b74-aedb-510636658ebf
relation.isAuthorOfPublication105cf25b-b5f2-4820-8b98-c46a0dafcfbe
relation.isAuthorOfPublication.latestForDiscoveryef58bfde-9aa6-4b74-aedb-510636658ebf

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
multivariate_functional_data.pdf
Size:
6.86 MB
Format:
Adobe Portable Document Format

Collections