Evaluating AI Methods for Pulse Oximetry: Performance, Clinical Accuracy, and Comprehensive Bias Analysis

dc.contributor.authorCabanas, Ana María
dc.contributor.authorSáez, Nicolás
dc.contributor.authorCollao Caiconte, Patricio O.
dc.contributor.authorMartín Escudero, María Del Pilar
dc.contributor.authorPagán, Josué
dc.contributor.authorJiménez Herranz, María Elena
dc.contributor.authorAyala Rodrigo, José Luis
dc.date.accessioned2025-10-31T11:15:17Z
dc.date.available2025-10-31T11:15:17Z
dc.date.issued2024-10-24
dc.description.abstractBlood oxygen saturation (SpO2) is vital for patient monitoring, particularly in clinical settings. Traditional SpO2 estimation methods have limitations, which can be addressed by analyzing photoplethysmography (PPG) signals with artificial intelligence (AI) techniques. This systematic review, following PRISMA guidelines, analyzed 183 unique references from WOS, PubMed, and Scopus, with 26 studies meeting the inclusion criteria. The review examined AI models, key features, oximeters used, datasets, tested saturation intervals, and performance metrics while also assessing bias through the QUADAS-2 criteria. Linear regression models and deep neural networks (DNNs) emerged as the leading AI methodologies, utilizing features such as statistical metrics, signal-to-noise ratios, and intricate waveform morphology to enhance accuracy. Gaussian Process models, in particular, exhibited superior performance, achieving Mean Absolute Error (MAE) values as low as 0.57% and Root Mean Square Error (RMSE) as low as 0.69%. The bias analysis highlighted the need for better patient selection, reliable reference standards, and comprehensive SpO2 intervals to improve model generalizability. A persistent challenge is the reliance on non-invasive methods over the more accurate arterial blood gas analysis and the limited datasets representing diverse physiological conditions. Future research must focus on improving reference standards, test protocols, and addressing ethical considerations in clinical trials. Integrating AI with traditional physiological models can further enhance SpO2 estimation accuracy and robustness, offering significant advancements in patient care.
dc.description.departmentDepto. de Radiología, Rehabilitación y Fisioterapia
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipAgencia Nacional de Investigación y Desarrollo
dc.description.statuspub
dc.identifier.citationCabanas, A. M., Sáez, N., Collao-Caiconte, P. O., Martín-Escudero, P., Pagán, J., Jiménez-Herranz, E., & Ayala, J. L. (2024). Evaluating AI Methods for Pulse Oximetry: Performance, Clinical Accuracy, and Comprehensive Bias Analysis. Bioengineering, 11(11), 1061. https://doi.org/10.3390/bioengineering11111061
dc.identifier.doi10.3390/bioengineering11111061
dc.identifier.issn2306-5354
dc.identifier.officialurlhttps://doi.org/10.3390/bioengineering11111061
dc.identifier.relatedurlhttps://www.mdpi.com/2306-5354/11/11/1061
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125575
dc.issue.number11
dc.journal.titleBioengineering
dc.language.isoeng
dc.page.initial1061
dc.publisherMDPI
dc.relation.projectIDSA22I0178
dc.relation.projectIDSA77210039
dc.relation.projectIDSA22I0178
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu57.08
dc.subject.cdu616-073.7
dc.subject.keywordoximetry
dc.subject.keywordSpO2
dc.subject.keywordartificial intelligence
dc.subject.keywordmachine learning
dc.subject.keywordprecision medicine
dc.subject.keywordpredictive modeling
dc.subject.keywordbias assessment
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco32 Ciencias Médicas
dc.subject.unesco22 Física
dc.titleEvaluating AI Methods for Pulse Oximetry: Performance, Clinical Accuracy, and Comprehensive Bias Analysis
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication773a796c-300d-4a3e-9e16-0e3880112a01
relation.isAuthorOfPublicationd61000ca-d4ff-47dc-b8f4-c0db0aa93474
relation.isAuthorOfPublicationd73a810d-34c3-440e-8b5f-e2a7b0eb538f
relation.isAuthorOfPublication.latestForDiscovery773a796c-300d-4a3e-9e16-0e3880112a01

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Evaluating AI Methods for Pulse Oximetry.pdf
Size:
2.7 MB
Format:
Adobe Portable Document Format

Collections