Caos y física estadística en sistemas cuánticos
Loading...
Official URL
Full text at PDC
Publication date
2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Se presenta un estudio de la transición entre comportamientos predecibles (integrables) y comportamientos caóticos en los sistemas cuánticos. En la primera sección se introduce la Teoría de Matrices Aleatorias, destacando las colectividades gaussianas más importantes para describir sistemas cuánticos caóticos. Asimismo, se expone la caracterización de estas colectividades por la distribución de los autovalores de sus matrices aleatorias. Esto se utiliza en la segunda sección para distinguir situaciones integrables y caóticas en un contexto cuántico, además de definir tres estadísticos (s, r y gap ratio) que permiten analizar el espectro de niveles del hamiltoniano del sistema. En la última sección se aplica el análisis a una red de Tavis-Cummings, modificando la fuerza de interacción entre espines y fotones y también rompiendo simetrías, con el fin de describir la transición. Finalmente, se concluye que la transición es cualitativamente monótona y continua, pudiendo expresar las propiedades de su distribución espectral como una combinación convexa de las propiedades de un comportamiento integrable y las de uno caótico.
A study of the transition between predictable (integrable) and chaotic behaviour in quantum systems is presented. The first section introduces Random Matrix Theory, highlighting the most important Gaussian ensembles for describing chaotic quantum systems. The characterisation of these ensembles by the distribution of the eigenvalues of their random matrices is also shown. This is used in the second section to distinguish integrable and chaotic situations in a quantum context, in addition to defining three statistics (s, r and gap ratio) that allow to analyse the spectrum of levels of the Hamiltonian of the system. In the last section, the analysis is applied to a Tavis-Cummings lattice, modifying the interaction strength between spins and photons and also breaking symmetries, in order to describe the transition. Finally, it is concluded that the transition is qualitatively monotonic and continuous, and the properties of its spectral distribution can be expressed as a convex combination of the properties of integrable and chaotic behaviour.
A study of the transition between predictable (integrable) and chaotic behaviour in quantum systems is presented. The first section introduces Random Matrix Theory, highlighting the most important Gaussian ensembles for describing chaotic quantum systems. The characterisation of these ensembles by the distribution of the eigenvalues of their random matrices is also shown. This is used in the second section to distinguish integrable and chaotic situations in a quantum context, in addition to defining three statistics (s, r and gap ratio) that allow to analyse the spectrum of levels of the Hamiltonian of the system. In the last section, the analysis is applied to a Tavis-Cummings lattice, modifying the interaction strength between spins and photons and also breaking symmetries, in order to describe the transition. Finally, it is concluded that the transition is qualitatively monotonic and continuous, and the properties of its spectral distribution can be expressed as a convex combination of the properties of integrable and chaotic behaviour.