On Chains of prime ideals in ring of semialgebraic funtions

dc.contributor.authorFernando Galván, José Francisco
dc.date.accessioned2023-06-19T13:27:33Z
dc.date.available2023-06-19T13:27:33Z
dc.date.issued2014
dc.description.abstractIn this work, we study the structure of non-refinable chains of prime ideals in the (real closed) rings S(M) and S*(M) of semialgebraic and bounded semialgebraic functions on a semialgebraic set M subset of R-m. We pay special attention to the prime z-ideals of S(M) and the minimal prime ideals of both rings. For the last, a decomposition of each semialgebraic set as an irredundant finite union of closed pure dimensional semialgebraic subsets plays a crucial role. We prove moreover the existence of maximal ideals in the ring S(M) of prefixed height whenever M is non-compact.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish GR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28164
dc.identifier.doi10.1093/qmath/hat048
dc.identifier.issn0033-5606
dc.identifier.officialurlhttp://qjmath.oxfordjournals.org/content/65/3/893.abstract
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33760
dc.issue.number3
dc.journal.titleQuaterly journal of mathematics
dc.language.isoeng
dc.page.final930
dc.page.initial893
dc.publisherOxford univ press
dc.relation.projectIDMTM2011-22435
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordSemialgebraic function
dc.subject.keywordZariski spectrum
dc.subject.keywordMaximal spectrum
dc.subject.keywordReal closed ring
dc.subject.keywordsemialgebraic compactication
dc.subject.keywordChain of prime ideals
dc.subject.keywordMaximal ideal
dc.subject.keywordMinimal prime ideal
dc.subject.keywordZ-ideal
dc.subject.keywordSemialgebraic depth
dc.subject.keywordFamily of bricks
dc.subject.keywordLocal compactness
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn Chains of prime ideals in ring of semialgebraic funtions
dc.typejournal article
dc.volume.number65
dcterms.references1. C. Andradas and J. M. Gamboa, On projections of real algebraic varieties, Pacific J. Math. 121 (1986), 281–291. 2. J. Bochnak, M. Coste and M.-F. Roy, Real algebraic geometry, Ergeb. Math. 36, Springer, Berlin,1998. 3. N. Bourbaki, General topology, Chapters 1–4. Elements of Mathematics, Springer, Berlin, 1989. 4. L. Bröcker, Real spectra and distribution of signatures. Geometrie algebrique reelle et formes quadratiques. Proceedings of a Conference held at the Université de Rennes 1, Lecture Notes in Mathematics 959, Springer, Berlin, 1982, 249–272. 5. G. L. Cherlin and M. A. Dickmann, Real closed rings. II. Model theory, Ann. Pure Appl. Logic 25 (1983), 213–231. 6. G. L. Cherlin and M. A. Dickmann, Real closed rings. I. Residue rings of rings of continuous functions, Fund. Math. 126 (1986), 147–183. 7. H. Delfs and M. Knebusch, Separation, retractions and homotopy extension in semialgebraic spaces, Pacific J. Math. 114 (1984), 47–71. 8. H. Delfs and M. Knebusch, Locally Semialgebraic Spaces, Lecture Notes in Mathematics 1173,Springer, Berlin, 1985. 9. L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J.84 (1996), 497–540. 10. J. F. Fernando and J. M. Gamboa, On the Krull dimension of rings of semialgebraic functions,preprint RAAG (2010),arXiv:1306.4109 11. J. F. Fernando and J. M. Gamboa, On Łojasiewicz’s inequality and the Nullstellensatz for rings of emialgebraic functions, preprint RAAG (2010), http://www.mat.ucm.es/josefer/pdfs/preprint/null-loj.pdf 12. J. F. Fernando and J. M. Gamboa, On the spectra of rings of semialgebraic functions, Collect.Math. 63 (2012), 299–31. 13. J. F. Fernando and J. M. Gamboa, On the semialgebraic Stone–Cech compactification of a semialgebraic set, Trans. Amer. Math. Soc. 364 (2012), 3479–3511. 14. J. M. Gamboa, On prime ideals in rings of semialgebraic functions. Proc. Amer. Math. Soc. 118 (1993), 1034–1041. 15. L. Gillman and M. Jerison, Rings of Continuous functions. The University Series in Higher Mathematics 1, D. Van Nostrand Company, Inc., 1960. 16. M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans.Amer. Math. Soc. 115 (1965), 110–130. 17. M. Mandelker, Prime ideal structure of rings of bounded continuous functions, Proc. Amer. Math.Soc. 19 (1968), 1432–1438. 18. J. Pila, On the algebraic points of a definable set,Selecta Math. (N.S.) 15 (2009) 151–170. 19. A. Prestel and N. Schwartz, Model Theory of Real Closed Rings. Valuation Theory and its Applications, Vol. I (Saskatoon, SK, 1999), Fields Institute of Communication 32, American Mathematical Society, Providence, RI, 2002, 261–290. 20. N. Schwartz, Real closed rings, Habilitationsschrift, München, 1984. 21. N. Schwartz, Real closed rings, Algebra and Order (Luminy-Marseille, 1984), Research and Experiments in Mathematics 14, Heldermann, Berlin, 1986, 175–194. 22. N. Schwartz, The basic theory of real closed spaces, Mem. Amer. Math. Soc. 77 (1989), viii + 122 pp. 23. N. Schwartz, Rings of continuous functions as real closed rings, Ordered Algebraic Structures (Curaçao, 1995), Kluwer Academic Publishers, Dordrecht, 1997, 277–313. 24. N. Schwartz and J. J. Madden, Semi-Algebraic Function Rings and Reflectors of Partially Ordered Rings, Lecture Notes in Mathematics 1712, Springer, Berlin, 1999. xii+279 pp. 25. N. Schwartz and M. Tressl, Elementary properties of minimal and maximal points in Zariski spectra, J. Algebra 323 (2010), 698–728. 26. M. Shiota, Nash Manifolds, Lecture Notes in Mathematics 1269, Springer, Berlin, 1987. 27. J. Stasica, Smooth points of a semialgebraic set, Ann. Polon. Math. 82 (2003), 149–153. 28. M. Tressl, The real spectrum of continuous definable functions in o-minimal structures, Séminaire de Structures Algébriques Ordonnées 1997–1998, 68 (1999), 1–15. 29. M. Tressl, Super real closed rings, Fund. Math. 194 (2007), no. 2 , 121–177. 30. M. Tressl, Bounded super real closed rings. Logic Colloquium 2007, Lecture Notes in Logics 35, Association of Symbols and Logic, La Jolla, CA, 2010, 220–237.
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fernando101.pdf
Size:
463.62 KB
Format:
Adobe Portable Document Format

Collections