Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lorentz and Gale–Ryser theorems on general measure spaces

dc.contributor.authorBoza, Santiago
dc.contributor.authorKřepela, Martin
dc.contributor.authorSoria de Diego, Francisco Javier
dc.date.accessioned2023-06-22T10:59:10Z
dc.date.available2023-06-22T10:59:10Z
dc.date.issued2022-08-09
dc.description.abstractBased on the Gale–Ryser theorem [2, 6], for the existence of suitable (0,1) -matrices for different partitions of a natural number, we revisit the classical result of Lorentz [4] regarding the characterization of a plane measurable set, in terms of its cross-sections, and extend it to general measure spaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74560
dc.identifier.doi10.1017/prm.2021.37
dc.identifier.issn0308-2105
dc.identifier.officialurlhttps://doi.org/10.1017/prm.2021.37
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71974
dc.issue.number4
dc.journal.titleProceedings of the Royal Society of Edinburgh: Section A Mathematics
dc.language.isoeng
dc.page.final878
dc.page.initial857
dc.publisherhttps://www.cambridge.org/core/
dc.relation.projectIDMTM2016-75196-P
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51
dc.subject.keywordCross sections
dc.subject.keywordNonincreasing rearrangement
dc.subject.keywordHardy-Littlewood-Pólya relation.
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleLorentz and Gale–Ryser theorems on general measure spaces
dc.typejournal article
dc.volume.number152
dcterms.references[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988. [2] D. Gale, A theorem on flows in networks, Pacific J. Math. 7 (1957), 1073–1082. [3] M. Krause, A simple proof of the Gale-Ryser theorem, Amer. Math. Monthly 103 (1996), 335–337. [4] G. G. Lorentz, A problem on plane measures, Amer. J. Math. 71 (1949), 417–426. [5] J. V. Ryff, Measure preserving transformations and rearrangements, J. Math. Anal. Appl. 31 (1970), 449–458. [6] H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Can. J. Math. 9 (1957), 371–377. [7] G. Sierksma and H. Hoogeveen, Seven criteria for integer sequences being graphic, J. Graph Theory 15 (1991), 223–231. [8] W. Sierpi´nski, Sur les fonctions d’ensemble additives et continues, Fund. Math. 3 (1922), 240–246.
dspace.entity.typePublication
relation.isAuthorOfPublicationb2108ca5-2270-4783-9661-46cd65b31fc3
relation.isAuthorOfPublication.latestForDiscoveryb2108ca5-2270-4783-9661-46cd65b31fc3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
soria_lorentz.pdf
Size:
204.69 KB
Format:
Adobe Portable Document Format

Collections