Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Lorentz and Gale–Ryser theorems on general measure spaces

dc.contributor.authorBoza, Santiago
dc.contributor.authorKřepela, Martin
dc.contributor.authorSoria de Diego, Francisco Javier
dc.date.accessioned2023-06-22T10:59:10Z
dc.date.available2023-06-22T10:59:10Z
dc.date.issued2022-08-09
dc.description.abstractBased on the Gale–Ryser theorem [2, 6], for the existence of suitable (0,1) -matrices for different partitions of a natural number, we revisit the classical result of Lorentz [4] regarding the characterization of a plane measurable set, in terms of its cross-sections, and extend it to general measure spaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74560
dc.identifier.doi10.1017/prm.2021.37
dc.identifier.issn0308-2105
dc.identifier.officialurlhttps://doi.org/10.1017/prm.2021.37
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71974
dc.issue.number4
dc.journal.titleProceedings of the Royal Society of Edinburgh: Section A Mathematics
dc.language.isoeng
dc.page.final878
dc.page.initial857
dc.publisherhttps://www.cambridge.org/core/
dc.relation.projectIDMTM2016-75196-P
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51
dc.subject.keywordCross sections
dc.subject.keywordNonincreasing rearrangement
dc.subject.keywordHardy-Littlewood-Pólya relation.
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleLorentz and Gale–Ryser theorems on general measure spaces
dc.typejournal article
dc.volume.number152
dcterms.references[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988. [2] D. Gale, A theorem on flows in networks, Pacific J. Math. 7 (1957), 1073–1082. [3] M. Krause, A simple proof of the Gale-Ryser theorem, Amer. Math. Monthly 103 (1996), 335–337. [4] G. G. Lorentz, A problem on plane measures, Amer. J. Math. 71 (1949), 417–426. [5] J. V. Ryff, Measure preserving transformations and rearrangements, J. Math. Anal. Appl. 31 (1970), 449–458. [6] H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Can. J. Math. 9 (1957), 371–377. [7] G. Sierksma and H. Hoogeveen, Seven criteria for integer sequences being graphic, J. Graph Theory 15 (1991), 223–231. [8] W. Sierpi´nski, Sur les fonctions d’ensemble additives et continues, Fund. Math. 3 (1922), 240–246.
dspace.entity.typePublication
relation.isAuthorOfPublicationb2108ca5-2270-4783-9661-46cd65b31fc3
relation.isAuthorOfPublication.latestForDiscoveryb2108ca5-2270-4783-9661-46cd65b31fc3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
soria_lorentz.pdf
Size:
204.69 KB
Format:
Adobe Portable Document Format

Collections