Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Morphological and spectral properties of the W51 region measured with the MAGIC telescopes

dc.contributor.authorAntoranz Canales, Pedro
dc.contributor.authorBarrio Uña, Juan Abel
dc.contributor.authorContreras González, José Luis
dc.contributor.authorFonseca González, María Victoria
dc.contributor.authorMiranda Pantoja, José Miguel
dc.contributor.authorScapin, Valeria
dc.date.accessioned2023-06-20T03:32:31Z
dc.date.available2023-06-20T03:32:31Z
dc.date.issued2012-05
dc.description© ESO. We would like to thank the anonymous referee as well as the Associate Editor M. Walmsley for fruitful comments and suggestions. We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma.
dc.description.abstractThe W51 complex hosts the supernova remnant W51C which is known to interact with the molecular clouds in the star forming region W51B. In addition, a possible pulsar wind nebula CXO J192318.5+140305 was found likely associated with the supernova remnant. Gamma-ray emission from this region was discovered by Fermi/LAT (between 0.2 and 50 GeV) and H. E. S. S. (>1 TeV). The spatial distribution of the events could not be used to pinpoint the location of the emission among the pulsar wind nebula, the supernova remnant shell and/or the molecular cloud. However, the modeling of the spectral energy distribution presented by the Fermi/LAT collaboration suggests a hadronic emission mechanism. The possibility that the gamma-ray emission from such an object is of hadronic origin can contribute to solvingthe long-standing problem of the contribution to galactic cosmic rays by supernova remnants. Aims. Our aim is to determine the morphology of the very-high-energy gamma-ray emission of W51 and measure its spectral properties. Methods. We performed observations of the W51 complex with the MAGIC telescopes for more than 50 h. The energy range accessible with MAGIC extends from 50 GeV to several TeV, allowing for the first spectral measurement at these energies. In addition, the good angular resolution in the medium (few hundred GeV) to high (above 1 TeV) energies allow us to perform morphological studies. We look for underlying structures by means of detailed morphological studies. Multi-wavelength data from this source have been sampled to model the emission with both leptonic and hadronic processes. Results. We detect an extended emission of very-high-energy gamma rays, with a significance of 11 standard deviations. We extend the spectrum from the highest Fermi/LAT energies to similar to 5 TeV and find that it follows a single power law with an index of 2.58 +/- 0.07(stat) +/- 0.22(syst). The main part of the emission coincides with the shocked cloud region, while we find a feature extending towards the pulsar wind nebula. The possible contribution of the pulsar wind nebula, assuming a point-like source, shows no dependence on energy and it is about 20% of the overall emission. The broad band spectral energy distribution can be explained with a hadronic model that implies proton acceleration above 100 TeV. This result, together with the morphology of the source, tentatively suggests that we observe ongoing acceleration of ions in the interaction zone between supernova remnant and cloud.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipGerman BMBF
dc.description.sponsorshipGerman MPG
dc.description.sponsorshipItalian INFN
dc.description.sponsorshipSwiss National Fund SNF
dc.description.sponsorshipSpanish MICINN
dc.description.sponsorshipMarie Curie program
dc.description.sponsorshipBulgarian NSF
dc.description.sponsorshipAcademy of Finland
dc.description.sponsorshipYIP of the Helmholtz Gemeinschaft;
dc.description.sponsorshipDFG Cluster of Excelle
dc.description.sponsorshipDFG Collaborative Research Centers
dc.description.sponsorshipPolish MNiSzW
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipMultiDark
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21243
dc.identifier.doi10.1051/0004-6361/201218846
dc.identifier.issn0004-6361
dc.identifier.officialurlhttp://dx.doi.org/10.1051/0004-6361/201218846
dc.identifier.relatedurlhttp://arxiv.org/abs/1201.4074
dc.identifier.relatedurlhttp://www.aanda.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43801
dc.journal.titleAstronomy & Astrophysics
dc.language.isoeng
dc.publisherEDP Sciencies
dc.relation.projectIDDO02-353
dc.relation.projectIDCPAN CSD2007-00042
dc.relation.projectIDSFB823/C4 SFB876/C3
dc.relation.projectID127740
dc.relation.projectID745/N-HESS-MAGIC/2010/0
dc.relation.projectIDAST-9800334
dc.relation.projectIDAST-0098562
dc.relation.projectIDAST-0100793
dc.relation.projectIDAST-0228993
dc.relation.projectIDAST-0507657
dc.relation.projectIDCSD2009-00064
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.cdu539.1
dc.subject.keywordSupernova Remnant W51C
dc.subject.keywordGamma-Ray Emission
dc.subject.keywordGalactic Cosmic-Rays
dc.subject.keywordMolecular Cloud
dc.subject.keywordNonthermal Emission
dc.subject.keywordAcceleration
dc.subject.keywordDiscovery
dc.subject.keywordRadiation
dc.subject.keywordMHZ.
dc.subject.ucmElectrónica (Física)
dc.subject.ucmElectricidad
dc.subject.ucmFísica nuclear
dc.subject.unesco2202.03 Electricidad
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleMorphological and spectral properties of the W51 region measured with the MAGIC telescopes
dc.typejournal article
dc.volume.number541
dcterms.referencesAbdo, A. A., Ackermann, M., Ajello, M., et al. 2009a, ApJ, 706, L1. Abdo, A. A., Allen, B. T., Aune, T., et al. 2009b, ApJ, 700, L127. Aharonian, F. A. & Atoyan, A. M. 1996, A&A, 309, 917. Albert, J., Aliu, E., Anderhub, H., et al. 2007, Nuclear Instruments and Methods in Physics Research A, 583, 494. Albert, J., Aliu, E., Anderhub, H., et al. 2008, Nucl.Instrum.Meth., A588, 424. Aleksić, J., Alvarez, E., Antonelli, L., et al. 2012, Astroparticle Physics, 35, 435. Baring, M. G., Ellison, D. C., Reynolds, S. P., Grenier, I. A., & Goret, P. 1999, ApJ, 513, 311. Blumenthal, G. R. & Gould, R. J. 1970, Reviews of Modern Physics, 42, 237. Brogan, C. L., Frail, D. A., Goss, W. M., & Troland, T. H. 2000, ApJ, 537, 875. Carpenter, J. M. & Sanders, D. B. 1998, AJ, 116, 1856. Ceccarelli, C., Hily-Blant, P., Montmerle, T., et al. 2011, ApJ, 740, L4+. Copetti, M. V. F. & Schmidt, A. A. 1991, MNRAS, 250, 127. Fang, J. & Zhang, L. 2010, MNRAS, 405, 462. Fiasson, A.,Marandon, V., Chaves, R. C. G., & Tibolla, O. 2009, in Proceedings of the 31st ICRC, Lodz, http://icrc2009.uni.lodz.pl/proc/pdf/icrc0889.pdf. Gabici, S., Aharonian, F. A., & Casanova, S. 2009, MNRAS, 396, 1629. Gabici, S., Casanova, S., Aharonian, F. A., & Rowell, G. 2010, in SF2A-2010: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, ed. S. Boissier, M. Heydari-Malayeri, R. Samadi, & D. Valls-Gabaud, 313–+. Giuliani, A., Cardillo, M., Tavani, M., et al. 2011, ApJ, 742, L30. Green, A. J., Frail, D. A., Goss, W. M., & Otrupcek, R. 1997, AJ, 114, 2058. Hillas, A. M. 2005, Journal of Physics G Nuclear Physics, 31, 95. Kelner, S. R., Aharonian, F. A.,&Bugayov, V. V. 2006, Phys. Rev. D, 74, 034018. Koo, B.-C., Heiles, C., Stanimirović, S., & Troland, T. 2010, AJ, 140, 262. Koo, B.-C., Kim, K.-T., & Seward, F. D. 1995a, ApJ, 447, 211. Koo, B.-C., Kim, K.-T., & Seward, F. D. 1995b, ApJ, 447, 211. Koo, B.-C., Lee, J.-J., & Seward, F. D. 2002, AJ, 123, 1629. Koo, B.-C., Lee, J.-J., Seward, F. D., & Moon, D.-S. 2005, ApJ, 633, 946. Koo, B.-C. & Moon, D.-S. 1997a, ApJ, 475, 194. Koo, B.-C. & Moon, D.-S. 1997b, ApJ, 485, 263. Li, T.-P. & Ma, Y.-Q. 1983, ApJ, 272, 317. Lombardi, S., Berger, K., Colin, P., et al. 2011, in Proc. 32nd ICRC, Beijing, ArXiv e-prints 1109.6195. Malkov, M. A., Diamond, P. H., & Sagdeev, R. Z. 2011, Nature Communications, 2. Malkov, M. A. & O’C Drury, L. 2001, Reports on Progress in Physics, 64, 429. Moisés, A. P., Damineli, A., Figuerêdo, E., et al. 2011, MNRAS, 411, 705. Moon, D.-S. & Koo, B.-C. 1994, Journal of Korean Astronomical Society, 27, 81. Moralejo, A., Gaug, M., Carmona, E., et al. 2009, ArXiv e-prints 0907.0943. Mori, M. 2009, Astroparticle Physics, 31, 341. Ohira, Y., Murase, K., & Yamazaki, R. 2011, MNRAS, 410, 1577. Paneque et al., O. 2011, in Proceedings of the Fermi Symposium, Rome. Sato, M., Reid, M. J., Brunthaler, A., & Menten, K. M. 2010, ApJ, 720, 1055. Seward, F. D. & Wang, Z.-R. 1988, ApJ, 332, 199. Simpson, J. A. 1983, Annual Review of Nuclear and Particle Science, 33, 323. Uchiyama, Y., Blandford, R. D., Funk, S., Tajima, H., & Tanaka, T. 2010, ApJ, 723, L122. Yuan, Q., Yin, P.-F., & Bi, X.-J. 2011, Astroparticle Physics, 35, 33.
dspace.entity.typePublication
relation.isAuthorOfPublication6bc87e5f-9b77-4982-b112-0d4f8aa128d0
relation.isAuthorOfPublication11e5fd8b-1a86-4f8d-85c6-135541232be4
relation.isAuthorOfPublication6a14529e-a65e-4709-9bc1-61f9429841c1
relation.isAuthorOfPublication9f2c0e34-0edd-497a-bbd0-fbd9d348e85c
relation.isAuthorOfPublication328f9716-2012-44f9-aacc-ef8d48782a77
relation.isAuthorOfPublication.latestForDiscovery6bc87e5f-9b77-4982-b112-0d4f8aa128d0

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
MirandaJM04preprint.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
MirandaJMlibre.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format

Collections