Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hamilton equations for elasticae in the Euclidean 3-space.

dc.contributor.authorPozo Coronado, Luis Miguel
dc.date.accessioned2023-06-20T17:06:02Z
dc.date.available2023-06-20T17:06:02Z
dc.date.issued2000
dc.description.abstractThe variational problem on spatial curves defined by the integral of the squared curvature, whose solutions are the elasticae or nonlinear splines, is analyzed from the Hamiltonian point of view, using a procedure developed by Munoz Masqueand Pozo Coronado [J. Munoz Masque, LM. Pozo Coronado, J. Phys. A 31 (1998) 6225-6242]. The symmetry of the problem under rigid motions is then used to reduce the Euler-Lagrange equations to a first-order dynamical system.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGESIC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17489
dc.identifier.doi10.1016/S0167-2789(00)00040-3
dc.identifier.issn0167-2789
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/01672789
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57769
dc.issue.number3-4
dc.journal.titlePhysica D
dc.language.isoeng
dc.page.final260
dc.page.initial248
dc.publisherElsevier
dc.relation.projectIDPB98-0533.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordHamilton equations
dc.subject.keywordElasticae
dc.subject.keywordGeneralized symmetries
dc.subject.keywordvariational problem
dc.subject.keywordSpatial curves
dc.subject.keywordsquared curvature
dc.subject.keywordRigid body motions
dc.subject.keywordEuler-Lagrange equations
dc.subject.keywordFirstorder dynamical system
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleHamilton equations for elasticae in the Euclidean 3-space.
dc.typejournal article
dc.volume.number141
dcterms.referencesR. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd Edition, Benjamin/Cummings, Menlo Park, CA, 1978. V.I. Arnold, Mathematical Methods of Classical Mechanics,2nd Edition, Springer, Berlin, 1989. G. Brunnett, P.E. Crouch, Elastic curves on the sphere,Adv. Comput. Math. 2 (1994) 23–40. R. Bryant, P. Griffiths, Reduction for constrained variational problems and the integral of the squared curvature, Am. J. Math. 108 (1986)525–570. G.C. Constantelos, On the Hamilton–Jacobi theory with derivatives of higher order, Nuovo Cimento B 84 (1984)91–10. R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience, New York, 1970. K. Foltinek, The Hamiltonian theory of elastica, Am. J.Math. 116 (1994) 1479–1488. M. Giaquinta, S. Hildebrandt, Calculus of Variations II:The Hamiltonian Formalism, Springer, Berlin, 1996. H. Goldschmidt, S. Sternberg, The Hamilton–Cartan formalism in the calculus of variations, Ann. Inst. Fourier (Grenoble) 23 (1) (1973)203–267. P.A. Griffiths, Exterior Differential Systems and the Calculus of Variations, Birkhaüser, Boston, MA, 1983. H.W. Guggenheimer, Differential Geometry, McGraw-Hill, New York, 1963. S. Kehrbaum, J.H. Maddocks, Elastic rods, rigid bodies,quaternions and the last quadrature, Philos. Trans.Roy. Soc. London Ser. A 355 (1997) 2117–2136. N. Koiso, Elasticae in a Riemannian manifold, Osaka J.Math. 29 (1992) 539–543. J. Langer, D.A. Singer, The total squared curvature of closed curves, J. Differential Geom. 20 (1984) 1–22. J. Langer, D.A. Singer, Hamiltonian aspects of the Kirchhoff elastic rod, Preprint, 1992. J. Langer, D.A. Singer, Lagrangian aspects of the Kirchhoff elastic rod, SIAM Rev. 38 (1996) 605–618. A. Linnér, Existence of free nonclosed Euler–Bernoulli elastica, Nonlinear Anal. 21 (1993) 575–593. J.D. Logan, Invariant Variational Principles, Academic Press, New York, 1977. L. Lusanna, The second Noether theorem as the basis of the theory of singular Lagrangian and Hamiltonian constraints, Riv. Nuovo Cimento 14 (1991) 1–75. J. Muñoz Masqué, Formes de structure et transformations infinitésimales de contact d’ordre supérieur, C.R. Acad. Sci. Paris Sé. I 298 (1984) 185–188. J. Muñoz Masqué, Poincaré–Cartan forms in higher order variational calculus on fibred manifolds,Rev.Mat.Iberoamericana 1 (1985)85–126. J. Muñoz Masqué, L.M. Pozo Coronado, Parameter-invariant second-order variational problems in one variable, J. Phys. A 31 (1998)6225–6242. P.J. Olver, Equivalence, Invariants, and Symmetry,Cambridge University Press, Cambridge, 1995. R.S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Am. Math. Soc. 22 (1957) 1–123. J.M. Pons, Ostrogradski’s theorem for higher-order singular Lagrangians, Lett. Math. Phys. 17 (1989) 181–189. S. Sternberg, Some preliminary remarks on the formal variational calculus of Gel’fand and Dikii, Lecture Notes in Math. 676 (1978)399–407. D.J. Struik, Lectures on Classical Differential Geometry, 2nd Edition, Addison-Wesley, Reading, MA, 1961.
dspace.entity.typePublication
relation.isAuthorOfPublication0124d449-632e-4dc8-9651-eb1975f330ab
relation.isAuthorOfPublication.latestForDiscovery0124d449-632e-4dc8-9651-eb1975f330ab

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pozo04.pdf
Size:
115.56 KB
Format:
Adobe Portable Document Format

Collections