On extreme values of orbit lengths in M/G/1 queues with constant retrial rate

dc.contributor.authorGómez-Corral, Antonio
dc.date.accessioned2023-06-20T16:54:59Z
dc.date.available2023-06-20T16:54:59Z
dc.date.issued2001
dc.description.abstractIn the design of waiting facilities for the units in a retrial queue, it is of interest to know probability distributions of extreme values of the orbit length. The purpose of this paper is to investigate the asymptotic behavior of the maximum orbit length in the M/G/1 queue with constant retrial rate. as the time interval increases. From the classical extreme value theory, we observe that, under standard linear normalizations, the maximum orbit length up to the nth time the positive recurrent queue becomes empty does not have a limit distribution. However, by allowing the parameters to vary with n, we prove the convergence of maximum orbit lengths to three possible limit distributions when the traffic intensity rho (n) approaches I from below and it approaches infinity.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15851
dc.identifier.doihttp://dx.doi.og
dc.identifier.issn0171-6468
dc.identifier.officialurlhttp://www.springerlink.com/content/25y9xp7y2t1flkfv/fulltext.pdf
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57416
dc.issue.number3
dc.journal.titleOr Spektrum
dc.language.isoeng
dc.page.final409
dc.page.initial395
dc.publisherSpringer
dc.relation.projectIDINTAS project 96-0828
dc.relation.projectIDPR64/99-8501
dc.relation.projectIDPB98-0837
dc.rights.accessRightsrestricted access
dc.subject.cdu519.216
dc.subject.keywordExtreme values
dc.subject.keywordqueueing theory
dc.subject.keywordlimit theorems
dc.subject.keywordrepeated attempts
dc.subject.ucmProcesos estocásticos
dc.subject.unesco1208.08 Procesos Estocásticos
dc.titleOn extreme values of orbit lengths in M/G/1 queues with constant retrial rate
dc.typejournal article
dc.volume.number23
dcterms.referencesAnderson CW (1970) Extreme value theory for a class of discrete distributions with applications to some stochastic processes. Journal of Applied Probability 7: 99–113 Artalejo JR (1997) Analysis ofan M/G/1 queue with constant repeated attempts and server vacations. Computers and Operations Research 24: 493–504 Artalejo JR,Gómez-Corral A.(1997) Steady state solution of a single-server queue with linear repeated requests. Journal of Applied Probability 34: 223–233 Artalejo JR, Gómez-Corral A (1998) Analysis of a stochastic clearing system with repeated attempts. Communications in Statistics - Stochastic Models 14: 623–645 Artalejo JR (1999) A classified bibliography of research on retrial queues: Progress in 1990-1999. Top 7: 187–211 Artalejo JR, Gómez-Corral A, Neuts MF (2001) Analysis of multiserv er queues with constant retrial rate. European Journal of Operational Research (to appear) Artalejo JR, Gómez-Corral A, Neuts MF (2000) Numerical analysis of multiserv er retrial queues operating under a full access policy. In: Latouche G, Taylor PG (eds) Advances in algorithmic methods for stochastic models, pp. 1–19. Notable Publications Inc., NJ Asmussen S, Perry D (1992) On cycle maxima, first passage problems and extreme value theory of queues. Communications in Statistics - Stochastic Models 8: 421–458 Berger AW, Whitt W (1995) Maximum values in queueing processes. Probability in the Engineering and Informational Sciences 9: 375–409 Bertsekas D, Gallager R (1987) Data networks. Prentice-Hall, Englewood Cliffs, NJ Castillo E (1988) Extreme value theory in engineering. Academic Press, Boston Choi BD, ShinYW, AhnWC(1992) Retrial queues with collision arising from unslotted CSMA/CD protocol. Queueing Systems 11: 335–356 Choi BD, Park KK, Pearce CEM (1993) An M/M/1 retrial queue with control policy and general retrial times. Queueing Systems 14: 275–292 Choi BD, Rhee KH, Park KK (1993) TheM/G/1 retrial queue with retrial rate control policy. Probability in the Engineering and Informational Sciences 7: 29–46 Choi BD, Rhee KH (1996) An M/G/1 retrial queue with a threshold in the retrial group. Kyungpook Mathematical Journal 35: 469–479 Cohen JW (1967) The distribution of the maximum number of customers present simultaneously during a busy period for the queueing systems M/G/1 and G/M/1. Journal of Applied Probability 4: 162–179 Cohen JW (1968) Extreme value distribution for theM/G/1 and the G/M/1 queueing systems. Annales de L’Institut Henri Poincar´e Section B 4: 83–98 Cohen JW (1982) The single server queue. North-Holland, Amsterdam Cooper RB, Tilt B (1976) On the relationship between the distribution of maximal queue length in theM/G/1 queue and the mean busy period in theM/G/1/n queue. Journal of Applied Probability 13: 195-199 Falin GI (1990) A survey ofretrial queues. Queueing Systems 7: 127–167 Falin GI, Templeton JGC (1997) Retrial queues. Chapman and Hall, London Farahmand K (1990) Single line queue with repeated demands. Queueing Systems 6: 223–228 Fayolle G, Gelenbe E, Labetoulle J (1977) Stability and optimal control of the packet switching broadcast channel. Journal of the Association of Computing Machines 24:375–386 Fayolle G (1986) A simple telephone exchange with delayed feedbacks. In: Boxma OJ,Cohen JW, Tijms HC (eds) Teletraffic analysis and computer performance evaluation,pp 245–253. Elsevier Science, Amsterdam Galambos J (1978) The asymptotic theory of extreme order statistics.Wiley, New York Gómez-Corral A (1999) Stochastic analysis of a single server retrial queue with general retrial times. Naval Research Logistics 46: 561–581 Gómez-Corral A (2000) Applications of a Markov renewal process arising in the theory of M/G/1 queues with constant retrial rate. Technical Report #1/2000. Department of Statistics and Operations Research I, University Complutense of Madrid Han DH, Lee YW (1996) MMPP,M/G/1 retrial queue with two classes ofcustomers. Communications of the Korean Mathematical Society 11: 481–493 Heathcote CR (1965) On the maximum of the queue GI/M/1. Journal of Applied Probability 2: 206–214 Heyde CC (1971) On the growth of the maximum queue length in a stable queue. Operations Research 19: 447–452 Hooghiemstra G, Meester LE, H¨usler J (1998) On the extremal index for the M/M/s queue. Communications in Statistics – Stochastic Models 14: 611–621 Iglehart DL (1972) Extreme values in the GI/G/1 queue. The Annals of Mathematical Statistics 43: 627–635 Leadbetter MR, Lindgren G, Rootz´en H (1983) Extremes and related properties of random sequences and processes. Springer, Berlin Heidelberg New York Marsden JE (1973) Basic complex analysis. Freeman, San Francisco Martín M, Artalejo JR (1995) Analysis ofan M/G/1 queue with two types of impatient units. Advances in Applied Probability 27: 840-861 McCormickWP, ParkYS(1992) Approximating the distribution of the maximum queue length for M/M/s queues. In: Bhat UN, Basawa JV (eds) Queues and related models.pp 240–261. Oxford University Press, Oxford Meditch JS, Lea CTA (1983) Stability and optimization of the CSMS and CSMA/CD channels. IEEE Transactions on Communications COM 31: 763–774 Neuts MF (1964) The distribution ofthe maximum length of a Poisson queue during a busy period. Operations Research 12: 281–285 Neuts MF (1989) Structured stochastic matrices ofM/G/1 type and their applications. Marcel Dekker, New York Ramalhoto MF, G´omez-Corral A (1998) Some decomposition formulae for M/M/r/r + d queues with constant retrial rate. Communications in Statistics – Stochastic Models 14: 123–145 Serfozo RF (1988) Extreme values of birth and death processes and queues. Stochastic Processes and their Applications 27: 291–306 Serfozo RF (1988) Extreme values of queue lengths inM/G/1 and GI/M/1 systems. Mathematics of Operations Research 13: 349–357 Yang T, Templeton JGC (1987) A survey on retrial queues. Queueing Systems 2: 201–233
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
corral29.pdf
Size:
205.77 KB
Format:
Adobe Portable Document Format

Collections