Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Growth and characterization of mn doped SnO_2 nanowires, nanobelts, and microplates

dc.contributor.authorHerrera, Manuel
dc.contributor.authorMaestre Varea, David
dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-19T13:22:29Z
dc.date.available2023-06-19T13:22:29Z
dc.date.issued2013-05-02
dc.description© 2013 American Chemical Society. This work was supported by MICINN (Projects MAT-2009-07882, MAT-2012-31959, and CSD-2009-00013). M.H. is thankful for the financial support from PASPA-UNAM and Conacyt 102519 project. We thank M. Amatti and L. Gregoratti for their help during the XPS measurements.
dc.description.abstractUndoped and Mn doped SnO_2 nanowires, nanobelts, and microplates have been grown by a thermal evaporation method that enables the morphology and the Mn content in the structures to be controlled. The structural and morphological characterization was carried out by scanning and transmission electron microscopy (SEM and TEM) and electron backscattered diffraction (EBSD). A crystallographic model has been proposed to describe the SnO2:Mn microplates. X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) demonstrated the incorporation of Mn into the SnO2 lattice in concentrations up to 1.6 at % depending on the thermal treatment employed for the growth of the structures. Variations in the luminescence of the doped nanostructures as a function of the Mn content have been studied. A correlation between facets of the SnO_2:Mn microplates, identified by EBSD, with higher Mn content, and the increase of the luminescence emissions associated to, oxygen vacancies related defects was demonstrated.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.sponsorshipPASPA-UNAM
dc.description.sponsorshipConacyt
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23690
dc.identifier.doi10.1021/jp4007894
dc.identifier.issn1932-7447
dc.identifier.officialurlhttp://dx.doi.org/10.1021/jp4007894
dc.identifier.relatedurlhttp://pubs.acs.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33401
dc.issue.number17
dc.journal.titleJournal of Physical Chemistry C
dc.language.isoeng
dc.page.final9003
dc.page.initial8997
dc.publisherAmer Chemical Soc
dc.relation.projectIDMAT-2009-07882
dc.relation.projectIDMAT-2012-31959
dc.relation.projectIDCSD-2009-00013
dc.relation.projectIDConacyt 102519
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.keywordTin Oxide
dc.subject.keywordNanoribbons
dc.subject.keywordLuminescence
dc.subject.ucmFísica de materiales
dc.titleGrowth and characterization of mn doped SnO_2 nanowires, nanobelts, and microplates
dc.typejournal article
dc.volume.number117
dcterms.references(1) Yin, X, M.; Li, C. C.; Zhang, M.; Hao, Q. Y.; Liu, S.; Li, Q. H.; Chen, L. B.; Wang, T. H. Nanotechnology 2009, 20, 455503. (2) Sambhaji, S. B.; Gauri, A. T.; Arif, V. S.; Oh-Shim, J.; Myung-Mo, S.; Rajaram, S. M.; Anil, V. G.; Sung-Hwan, H. Mater. Lett. 2012, 79, 29. (3) Cannella, G.; Principato, F.; Foti, M.; Di Marco, S.; Grasso, A.; Lombardo, S. J. Appl. Phys. 2011, 110, 024502. (4) Zhang, S-G.; Yin, S-F.; Wei, Y-D.; Luo, S-L.; Au, C-T. Catal. Lett. 2012, 142, 608. (5) Fitzgerald, C. B.; Venkatesan, M.; Dorneles, L. S.; Gunning, R.; Stamenov, P.; Coey, J. M. D.; Stampe, P. A.; Kennedy, R. J.; Moreira, E. C.; Sias, U. S. Phys. Rev. B 2006, 74, 115307. (6) Espinosa, A.; García-Hernández, M.; Menéndez, N.; Prieto, C.; De-Andrés, A. Phys Rev B 2010, 81, 064419. (7) Prellier, W.; Fouchet, A.; Mercey, B. J. Phys.: Condens. Matter 2003, 15, R1583. (8) Long, R.; English, N. J. Phys. Lett. A 2009, 374, 319. (9) Wang, C.; Wu, Q.; Ge, H. L.; Shang, T.; Jiang, J. Z. Nanotechnology 2012, 23, 075704. (10) Nomura, K.; Okabayashi, J.; Okamura, K.; Yamada, Y. J. Appl. Phys. 2011, 110, 083901. (11) Zhang, L.; Ge, S.; Zuo, Y.; Zhang, B.; Xi, L. J. Phys. Chem. C 2010, 114, 7541. (12) Lee, C-H.; Nam, B-A.; Choi, W-K.; Lee, J. K.; Choi, D-J.; Oh, YJ. Mater. Lett. 2011, 65, 722. (13) Xiao, Y.; Ge, S.; Xi, L.; Zuo, Y.; Zhou, X.; Zhang, B.; Zhang, L.; Li, C.; Han, X.; Wen, Z. Appl. Surf. Sci. 2008, 254, 7459. (14) Chang, J.; Mironov, V. L.; Gribkov, B. A.; Fraerman, A. A.; Gusev, S. A.; Vdovichev, S. N. J. Appl. Phys. 2006, 100, 104304. (15) Chi, J.; Ge, H.; Wang, J.; Zuo, Y.; Zhang, L. J. Appl. Phys. 2011, 110, 83907. (16) Huang, L.; Pu, L.; Shi, Y.; Zhang, R.; Gu, B.; Du, Y.; Wright, S. Appl. Phys. Lett. 2005, 87, 163124. (17) Wu, J.; Yu, K.; Li, L.; Xu, J.; Shang, D.; Xu, Y.; Zhu, Z. J. Phys. D: Appl. Phys. 2008, 41, 185302. (18) Chen, Y. X.; Campbell, L. J.; Zhou, W. L. J. Cryst. Growth 2004, 270, 505. (19) Jiang, X.; Zhang, L.; Wang, T.; Wan, Q. J. Appl. Phys. 2009, 106, 104316. (20) Ross, F. Rep. Prog. Phys. 2010, 73, 114501. (21) Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Solid State Commun. 2001, 118, 351−354. (22) Luo, S.; Fan, J.; Liu, W.; Zhang, M.; Song, Z.; Lin, C.; Wu, X.; Chu, P. K. Nanotechnology 2006, 17, 1695. (23) Kim, S.; Lim, T.; Ju, S. Nanotechnology 2011, 22, 305704. (24) Maestre, D.; Cremades, A.; Piqueras, J. J. Appl. Phys. 2004, 95, 3027. (25) Luo, S.; Chu, P. K.; Liu, W.; Zhang, M.; Lin, C. Appl. Phys. Lett. 2006, 88, 183112. (26) Chen, H. T.; Xiong, S. J.; Wu, X. L.; Zhu, J.; Shen, J. C.; Chu, P. K. Nano Lett. 2009, 9, 1926. (27) Zhou, X. T.; Heigl, F.; Murphy, M. W.; Sham, T. K. Apppl. Phys. Lett. 2006, 89, 213109. (28) Shuang, D.; Zhu, X. X.; Wang, J. B.; Zhong, Z. L.; Huang, G. J.; He, C. Appl. Surf. Sci. 2011, 257, 6085−6088. (29) Pan, S. S.; Tian, Y. H.; Luo, Y. Y.; Zhang, Y. X.; Wang, S.; Li, G. H. Appl. Phys. Lett. 2010, 97, 221105. (30) Maestre, D.; Häussler, D.; Cremades, A.; Jäger, W.; Piqueras, J. J. 011, 115, 18083. (31) Ortega, Y.; Dieker, Ch.; Jäger, W.; Piqueras, J.; Fernández, P. Nanotechnology 2010, 21, 225604. (32) Yang, L. X.; Zhu, Y. J.; Tong, H.; Wang, W-W. Ultrason.Sonochem. 2007, 14, 259. (33) Gillot, B.; El-Guendouzi, M.; Laarj, M. Mater. Chem. Phys. 2001, 70, 54. (34) Maestre, D.; Martínez de Velasco, I.; Cremades, A.; Amati, M.; Piqueras, J. J. Phys. Chem. C 2010, 114, 11748. (35) Togo, A.; Oba, F.; Tanaka, I.; Tatsumi, K. Phys. Rev. B 2006, 74, 195128.
dspace.entity.typePublication
relation.isAuthorOfPublication43cbf291-2f80-4902-8837-ea2a9ffaa702
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscovery43cbf291-2f80-4902-8837-ea2a9ffaa702

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CremadesAna62.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format

Collections