Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Attractors of parabolic problems with nonlinear boundary conditions uniform bounds

dc.contributor.authorArrieta Algarra, José María
dc.contributor.authorCarvalho, Alexandre N.
dc.contributor.authorRodríguez Bernal, Aníbal
dc.date.accessioned2023-06-20T17:10:58Z
dc.date.available2023-06-20T17:10:58Z
dc.date.issued2000
dc.description.abstractThe authors study the asymptotic behavior of solutions to a semilinear parabolic problem u t −div(a(x)∇u)+c(x)u=f(x,u) for u=u(x,t), t>0, x∈Ω⊂⊂R N , a(x)>m>0; u(x,0)=u 0 with nonlinear boundary conditions of the form u=0 on Γ 0 , and a(x)∂ n u+b(x)u=g(x,u) on Γ 1 , where Γ i are components of ∂Ω . Under smoothness and growth conditions which ensure the local classical well-posedness of the problem, they indicate some sign conditions under which the solutions are globally defined in time, and somewhat more strong dissipativeness conditions under which they possess a global attractor that captures the asymptotic dynamics of the system. After that the authors study the dependence of the attractors on the diffusion. For a(x)=a ε (x) they show their upper semicontinuity on ε . Throughout the paper they also pay special attention to the dependence of the estimates obtained on the domain Ω and show that in certain instances the L ∞ bounds on the attractors do not depend on the shape of Ω but rather on |Ω| .
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19910
dc.identifier.doi10.1080/03605300008821506
dc.identifier.issn0360-5302
dc.identifier.officialurlhttp://www.tandfonline.com/doi/abs/10.1080/03605300008821506
dc.identifier.relatedurlhttp://www.tandfonline.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57904
dc.issue.number1-2
dc.journal.titleCommunications in Partial Differential Equations
dc.language.isoeng
dc.page.final37
dc.page.initial1
dc.publisherTaylor & Francis
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordSemilinear equation
dc.subject.keywordGroth restrictions
dc.subject.keywordSign conditions
dc.subject.keywordDissipativeness condition
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleAttractors of parabolic problems with nonlinear boundary conditions uniform bounds
dc.typejournal article
dc.volume.number25
dcterms.referencesR. Adams, Sobolev Spaces, Academic Press, Boston, 1978. N.D. Alikakos, "Regularity and Asymptotic Behavior for the Second Order Parabolic Equation with Nonlinear Boundary Conditions in L p , Journal of Diff. Equations 39, 311–344 (1981). H. Amann, "Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems", in: Schmeisser/Triebel: Function Spaces, Differential Operators and Nonlinear Analysis, Teubner Texte zur Mathematik, 133, 9–126 (1993). H. Amann, Linear and Quasilinear Parabolic Problems. Abstract Linear Theory. Birkäuser Verlag, (1995). J. M. Arrieta, A. N. Carvalho, "Abstract Parabolic Problems with Crititical Nonlinearities and Applications to Navier-Stokes and Heat Equations", to appear in Transactions of the A.M.S. J. M. Arrieta, A. N. Carvalho, A. Rodríguez-Bernal, "Parabolic Problems with Nonlinear Boundary Conditions and Critical Nonlinearities", to appear in Journal of Differential Equations. J. M. Arrieta, A. N. Carvalho, A. Rodríguez-Bernal, "Attractors of Parabolic Problems with Nonlinear Boundary Conditions. Upper Semicontinuity.", in preparation. A. N. Carvalho, "Contracting Sets and Dissipation", Proceedings of the Royal Society of Edinburgh, 125A, pp. 1305–1329, (1995). A. N. Carvalho, J. W. Cholewa, T. Dlotko, "Examples of Global Attractors in Parabolic Problems", Hokkaido Mathematical Journal, 27, no. 1, pp. 77–103, (1998). A. N. Carvalho, T. Dlotko, "Parabolic Problems in H 1 with Fast Growing Nonlinearities", Nonlinear Analysis: Theory, Methods and Applications, 33 no. 4, pp 391–399, (1998). A. N. Carvalho, S. M. Oliva, A. L. Pereira. A. Rodriguez-Bernal, "Attractors for Parabolic Problems with Nonlinear Boundary Conditions", J. Math. Anal. Appl. 207, # 2, 409–461 (1997). A. Benssousan, J.L. Lions, G. Papanicolau, Asymptotic analysis for periodic structures, North Holland (1978). E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press (1989). E.N. Dancer, D. Daners, "Domain Perturbation for Elliptic Equations Subject to Robin Boundary Conditions", Journal of Diff. Equations 138, 86–132 (1997). J. K. Hale, "Asymptotic Behavior of Dissipative Systems", Mathematical Surveys and Monographs, 25, AMS (1988). J. K. Hale, G. Raugel, "Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation", Journal of Diff. Equations 73, 197–214 (1988). D. Henry, "Geometric Theory of Semilinear Parabolic Problems", Lecture Notes in Mathematics, No 840, Springer Verlag (1981). T. Kato, Perturbation Theory for Linear Operators, Springer Verlag (1980). O.Ladyzenskaya, N. Uralseva, "Linear and Quasilinear Elliptic Equations", Academic Press (1968). V.G. Maz'ja, "Sobolev Spaces". Springer-Verlag, Berlin (1985). O. Oleinik, A.S. Shamaev, G.A. Yosifian, Mathematical problems in elasticity and homogenization, North Holland (1992). Pazy, A. "Semigroups of Linear Operators and Applications to Partial Differential Equations", Springer-Verlag (1983). A. Rodriguez-Bernal, "Localized spatial homogenization and large diffusion", SIAM J. Math. Analysis 29, # 6, 1361–1380 (1998). J. Sánchez-Hubert, E. Sánchez-Palencia, Vibration and coupling of continuous systems. Asymptotic methods, Springer-Verlag (1989). E. Sanchez-Palencia, Non homogeneous media and vibration theory, Lecture notes in Physics 127 (1980). R.Temam, "Infinite Dimensional Dynamical Systems in Mechanichs and Physics", Springer (1988).
dspace.entity.typePublication
relation.isAuthorOfPublication2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscovery2f8ee04e-dfcb-4000-a2ae-18047c5f0f4a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal45.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format

Collections