Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lusternik-Schnirelmann category and Morse decompositions

dc.contributor.authorRodríguez Sanjurjo, José Manuel
dc.date.accessioned2023-06-20T18:46:15Z
dc.date.available2023-06-20T18:46:15Z
dc.date.issued2000-12
dc.description.abstractWe study in this paper some properties of the Lusternik-Schnirelmann category of isolated invariant sets of continuous dynamical systems. There are several different definitions of this coefficient, although most of them agree in the important case of ANR's (Absolute Neighbourhood Retracts). We refer to the review articles [10] by R. H. Fox and [15, 16] by I. M. James for general information about this topological invariant. We shall use in this paper the definition of the Lusternik-Schnirelmann category of a compactum introduced by K. Borsuk in [4]
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21823
dc.identifier.doi10.1112/S0025579300015904
dc.identifier.issn0025-5793
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7015084
dc.identifier.relatedurlhttp://journals.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58564
dc.issue.number1-2
dc.journal.titleMathematika. A Journal of Pure and Applied Mathematics
dc.language.isoeng
dc.page.final305
dc.page.initial299
dc.publisherCambridge Univ. Press
dc.rights.accessRightsrestricted access
dc.subject.cdu515.164
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleLusternik-Schnirelmann category and Morse decompositions
dc.typejournal article
dc.volume.number47
dcterms.referencesN. P. Bhatia. Attraction and nonsaddle sets in dynamical systems. J. Differential Equations, 8 (1970), 229–249. N. P. Bhatia and G. P. Szego. Stability Theory of Dynamical Systems (Springer, Berlin, 1970). K. Borsuk. Theory of Shape, Monografie Matematyczne 59, Warszawa, 1975. K. Borsuk. On the Lusternik–Schnirelmann category in the theory of shape. Fund. Math., 99 (1978), 35–42. M. L. Cartwright and J. E. Littlewood. Some fixed point theorems. Ann. Math., 54 (1951), 1–37. C. C. Conley. Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math., 38 (Amer. Math. Soc., Providence, R.I., 1976). C. C. Conley and E. Zehnder. The Birkhoff–Lewis Fixed Point Theorem and a conjecture of V. I. Arnold. Inventiones Math., (1983), 33–49. J. M. Cordier and T. Porter. Shape Theory. Categorical Methods of Approximation, Ellis Horwood Series: Mathematics and its Applications, Chichester, 1989. J. Dydak and J. Segal. Shape Theory: An Introduction, Lecture Notes in Math. 688, (Springer-Verlag, Berlin, 1978). R. H. Fox. On the Lusternik–Schnirelmann category. Ann. Math. 42 (1941), 333–370. A. Giraldo and J. M. R. Sanjurjo. On the global structure of invariant regions of flows with asymptotically stable attractors, Math. Zeitschrift, to appear. B. Günther and J. Segal. Every attractor of a flow on a manifold has the shape of a finite polyhedron. Proc. Amer. Math. Soc., 119 (1993), 321–329. H. M. Hastings. Shape theory and dynamical systems. In eds. N. G. Markley and W. Perizzo: The Structure of Attractors in Dynamical Systems, Lecture Notes in Math. 668 (Springer-Verlag, Berlin 1978), 150–160. S. T. Hu. Theory of Retracts (Wayne State University Press, Detroit, 1967). I. M. James. On category in the sense of Lusternik–Schnirelmann, Topology 17 (1978), 331–348. I. M. James. Lusternik–Schnirelmann category. In Handbook of Algebraic Topology (Elsevier, 1995), 1293–1310. S. Mardešić and J. Segal. Shape Theory (North Holland, Amsterdam, 1982). M. Pozniak. Lusternik–Schnirelmann category of an isolated invariant set. Univ. Iagellonicae Acta Math., 31 (1994), 129–139. J. W. Robbin and D. Salamon. Dynamical systems, shape theory and the Conley index. Ergod. Th. and Dynam. Sys., 8* (1998), 375–393. D. Salamon. Connected simple systems and the Conley index of isolated invariant sets. Trans. Amer. Math. Soc., 291 (1985), 1–41. J. M. R. Sanjurjo. Multihomotopy, Čech. spaces of loops and shape groups. Proc. London Math. Soc., 69 (1994), 330–344. J. M. R. Sanjurjo. On the structure of uniform attractors. J. Math. Anal. Appl., 192 (1995), 519–528.
dspace.entity.typePublication
relation.isAuthorOfPublicationf54f1d9d-37e9-4c15-9d97-e34a6343e575
relation.isAuthorOfPublication.latestForDiscoveryf54f1d9d-37e9-4c15-9d97-e34a6343e575

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodSanjurjo42.pdf
Size:
412.67 KB
Format:
Adobe Portable Document Format

Collections