Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Weak-Polynomial Convergence on a Banach Space

dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.contributor.authorPrieto Yerro, M. Ángeles
dc.date.accessioned2023-06-20T17:00:31Z
dc.date.available2023-06-20T17:00:31Z
dc.date.issued1993-06
dc.description.abstractWe show that any super-reflexive Banach space is a LAMBDA-space (i.e., the weak-polynomial convergence for sequences implies the norm convergence). We introduce the notion Of kappa-space (i.e., a Banach space where the weak-polynomial convergence for sequences is different from the weak convergence) and we prove that if a dual Banach space Z is a kappa-space with the approximation property, then the uniform algebra A(B) on the unit ball of Z generated by the weak-star continuous polynomials is not tight.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16788
dc.identifier.doi10.2307/2160323
dc.identifier.issn0002-9939
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57615
dc.issue.number2
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final468
dc.page.initial463
dc.publisherAmerican Mathematical Society
dc.relation.projectIDPB 87-1031
dc.rights.accessRightsrestricted access
dc.subject.cdu517.518.235
dc.subject.keywordTight algebras
dc.subject.keywordsuper-reflexive Banach space
dc.subject.keywordequivalent uniformly convex norm
dc.subject.keyword-space
dc.subject.keywordweak-polynomial convergence for sequences implies the norm convergence
dc.subject.keywordweak polynomial convergence for sequences is different from the weakconvergence
dc.subject.keyworddual Banach space
dc.subject.keywordapproximation property
dc.subject.keyworduniform algebra
dc.subject.keywordnot weakly compact Hankel-type operator
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleWeak-Polynomial Convergence on a Banach Space
dc.typejournal article
dc.volume.number118
dcterms.referencesR. Alencar, R. Aron, and S. Dineen, A reflexive space of holomorphic functions in infinite many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. R. Aron and C. Herves, Weakly sequentially continuous analytic functions on a Banach space, Functional Analysis, Holomorphy and Approximation Theory II (G. Zapata, ed.), North-Holland, Amsterdam, 1984, pp. 23-38. T. Carne, B. Cole, and T. Gamelin, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659. P. G. Casazza and T. J. Shura, Tsirelson space, Lecture Notes in Math., vol. 1363, Springer-Verlag, Berlin and New York, 1980. J. F. Castillo and C. Sanchez, Weakly-p-compact, p-Banach-Saks and super-reflexive Banach spaces, preprint. S. B. Chae, Holomorphy and calculus in normed spaces, Marcel Dekker, New York, 1985. M. Day, Normed linear spaces, Springer-Verlag, Berlin and New York, 1973. J. Diestel, Geometry of Banach spaces, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin and New York, 1975. __, Sequences and series in Banach spaces, Graduate Texts in Math., vol. 92, Springer-Verlag, Berlin and New York, 1984. T. W. Gamelin, Uniform algebras, Chelsea, New York, 1984. J. Globevnik, On interpolation by analytic maps in infinite dimensions, Math. Proc. Cambridge Philos. Soc. 83 (1978), 243-254. R. James, Super-reflexive spaces with bases, Pacific J. Math. 41 (1972), 409-420. W. Johnson, On finite dimensional subspaces of Banach spaces with local unconditional structure, Studia Math. 51 (1974), 226-240. B. Maurey and G. Pisier, Series de variables aleatories vectorielles independantes et proprieties geometriques des espaces de Banach, Studia Math. 58 (1976), 45-90. R. Ryan, Dunford-Pettisp roperties,B ull. Polon. Acad. Sci. 27 (1979), 373-379. D. Van Dulst, Reflexive and super-reflexive spaces, Math. Centre Tracts, vol. 102, North-Holland, Amsterdam, 1982.
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublicationf2a43f90-b551-412e-a95d-2587bbfaa27d
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo49.pdf
Size:
639.4 KB
Format:
Adobe Portable Document Format

Collections