Polystyrene nanopillars with inbuilt carbon nanotubes enable synaptic modulation and stimulation in interfaced neuronal networks

dc.contributor.authorCalaresu, Ivo
dc.contributor.authorHernández, Jaime
dc.contributor.authorRauti, Rossana
dc.contributor.authorRodilla, Beatriz L.
dc.contributor.authorArché-Núñez, Ana
dc.contributor.authorPérez García, Lucas
dc.contributor.authorCamarero, Julio
dc.contributor.authorMiranda, Rodolfo
dc.contributor.authorGonzález, M. Teresa
dc.contributor.authorRodríguez, Isabel
dc.contributor.authorScaini, Denis
dc.contributor.authorBallerini, Laura
dc.date.accessioned2023-06-17T09:01:23Z
dc.date.available2023-06-17T09:01:23Z
dc.date.issued2021
dc.description©2021 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH This work was performed within the framework of the ByAXON project funded by the European Union's Horizon 2020 FET Open program under grant agreement No. 737116. The work was partially funded by the Spanish Ministry of Science and Innovation through project BiSURE (Grant DPI2017-90058-R) and the "Severo Ochoa" Programme for Centres of Excellence in R&D (MINECO, Grant SEV-2016-0686). D.S. acknowledges the support of the European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement no. 838902. M. A. Monclus and J. M. Molina-Aldareguia from IMDEA Materials are acknowledged for the nanoindentation testing.
dc.description.abstractThe use of nanostructured materials and nanosized-topographies has the potential to impact the performance of implantable biodevices, including neural interfaces, enhancing their sensitivity and selectivity, while reducing tissue reactivity. As a result, current trends in biosensor technology require the effective ability to improve devices with controlled nanostructures. Nanoimprint lithography to pattern surfaces with high-density and high aspect ratio nanopillars (NPs) made of polystyrene (PS-NP, insulating), or of a polystyrene/carbon-nanotube nanocomposite (PS-CNT-NP, electrically conductive) are exploited. Both substrates are challenged with cultured primary neurons. They are demonstrated to support the development of suspended synaptic networks at the NPs' interfaces characterized by a reduction in proliferating neuroglia, and a boost in neuronal emergent electrical activity when compared to flat controls. The authors successfully exploit their conductive PS-CNT-NPs to stimulate cultured cells electrically. The ability of both nanostructured surfaces to interface tissue explants isolated from the mouse spinal cord is then tested. The integration of the neuronal circuits with the NP topology, the suspended nature of the cultured networks, the reduced neuroglia formation, and the higher network activity together with the ability to deliver electrical stimuli via PS-CNT-NP reveal such platforms as promising designs to implement on neuro-prosthetic or neurostimulation devices.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipCentros de Excelencia Severo Ochoa (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/64636
dc.identifier.doi10.1002/admi.202002121
dc.identifier.issn2196-7350
dc.identifier.officialurlhttp://dx.doi.org/10.1002/admi.202002121
dc.identifier.relatedurlhttps://onlinelibrary.wiley.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7953
dc.journal.titleAdvanced materials interfaces
dc.language.isoeng
dc.publisherWiley
dc.relation.projectID(ByAXON (737116) ; MSCA-838902)
dc.relation.projectIDDPI2017-90058-R
dc.relation.projectIDSEV-2016-0686
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu538.9
dc.subject.keywordBiomaterials
dc.subject.keywordCarbon nanotubes
dc.subject.keywordElectrical stimulation
dc.subject.keywordHippocampal cultures
dc.subject.keywordNanopillars
dc.subject.keywordSpinal cord organotypic slices
dc.subject.keywordSuspended two-dimensional cultures
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titlePolystyrene nanopillars with inbuilt carbon nanotubes enable synaptic modulation and stimulation in interfaced neuronal networks
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication01b88344-8278-4947-9475-d5b2a652b9d7
relation.isAuthorOfPublication.latestForDiscovery01b88344-8278-4947-9475-d5b2a652b9d7
Download
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PérezLucas 25 libre + CC.pdf
Size:
2.96 MB
Format:
Adobe Portable Document Format
Collections