Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On Symmetries Of Compact Riemann Surfaces With Cyclic Groups Of Automorphisms

dc.contributor.authorGamboa Mutuberria, José Manuel
dc.contributor.authorBujalance, E.
dc.contributor.authorCirre, J.F.
dc.contributor.authorGromadzki, G.
dc.date.accessioned2023-06-20T09:34:11Z
dc.date.available2023-06-20T09:34:11Z
dc.date.issued2006
dc.description.abstractA Riemann surface X is said to be of type (n,m) if its full automorphism group AutX is cyclic of order n and the quotient surface X/AutX has genus m. In this paper we determine necessary and sufficient conditions on the integers n,m,g and γ, where n is odd, for the existence of a Riemann surface of genus g and type (n,m) admitting a symmetry with γ ovals.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15234
dc.identifier.doi10.1016/j.jalgebra.2006.03.019
dc.identifier.issn0213-2230
dc.identifier.officialurlhttp://projecteuclid.org/euclid.rmi/1218475347
dc.identifier.relatedurlhttp://projecteuclid.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49928
dc.issue.number1
dc.journal.titleRevista Matemática Iberoamericana
dc.language.isoeng
dc.page.final95
dc.page.initial82
dc.publisherUniversidad Autónoma Madrid
dc.rights.accessRightsopen access
dc.subject.cdu517.547, 515.172
dc.subject.keywordRiemann surface
dc.subject.keywordautomorphism group
dc.subject.keywordFuchsian and nec groups
dc.subject.keywordsymmetry
dc.subject.keywordovals
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleOn Symmetries Of Compact Riemann Surfaces With Cyclic Groups Of Automorphisms
dc.typejournal article
dc.volume.number301
dcterms.referencesE. Bujalance, M.D.E. Conder, On cyclic groups of automorphisms of Riemann surfaces, J. London Math. Soc. (2) 59 (1999) 573–584. E. Bujalance, A.F. Costa, J.M. Gamboa, Real parts of complex algebraic curves, in: Real Analytic and Algebraic Geometry, Trento, 1988, in: Lecture Notes in Math., vol. 1420, Springer-Verlag, Berlin, 1990, pp. 81–110. E. Bujalance, J.J. Etayo, J.M. Gamboa, G. Gromadzki, Automorphism Groups of Compact Bordered Klein Surfaces, Lecture Notes in Math., vol. 1439, Springer-Verlag, Berlin, 1990. G. Gromadzki, On a Harnack–Natanzon theorem for the family of real forms of Riemann surfaces, J. Pure Appl. Algebra 121 (1997) 253–269. G. Gromadzki, Symmetries of Riemann surfaces from a combinatorial point of view, in: Topics of Riemann Surfaces and Fuchsian Groups, in: London Math. Soc. Lecture Note Ser., vol. 287, Cambridge Univ. Press, 2001, pp. 91–112. A. Harnack, Über die Vieltheiligkeit der ebenen algebraischen Kurven, Math. Ann. 10 (1876) 189–198. W.J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. 17 (1966) 86–97. A.H.M. Hoare, D. Singerman, The orientability of subgroups of plane groups, in: Groups—St. Andrews 1981, St. Andrews, 1981, in: London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, 1982, pp. 221–227. G. Nakamura, The existence of symmetric Riemann surfaces determined by cyclic groups, Nagoya Math. J. 151 (1998) 129–143. S.M. Natanzon, Klein surfaces, Uspekhi Mat. Nauk 45 (6(276)) (1990) 47–90, 189 (in Russian); translation in Russian Math. Surveys 45 (6) (1990) 53–108. S.M. Natanzon, Geometry and algebra of real forms of complex curves, Math. Z. 243 (2) (2003) 391–407. D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972) 29–38. D. Singerman, On the structure of non-euclidean crystallographic groups, Proc. Cambridge Philos. Soc. 76 (1974) 233–240.
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
08.pdf
Size:
166.1 KB
Format:
Adobe Portable Document Format

Collections