Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modeling of dike-induced graben nucleation in the Elysium region, Mars: The role of planetary gravity

dc.contributor.authorRivas Dorado, Samuel
dc.contributor.authorRuiz Pérez, Javier
dc.contributor.authorRomeo Briones, Ignacio
dc.date.accessioned2023-06-22T12:39:50Z
dc.date.available2023-06-22T12:39:50Z
dc.date.issued2022-12-29
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractWe have studied the processes of dike-induced graben nucleation through the analytical modeling of the failure sequence, i.e., the timing, location, and mode, of the discontinuities formed between the dike's upper tip and the surface. To this end we use as input parameters dike geometry and the elastic and frictional properties of a homogeneous medium. We applied this analytical model to three dike-induced graben in the Elysium region of Mars; Galaxias, Elysium, and Cerberus Fossae, some of which have been found to show active extensional tectonics. Firstly, we calculated dike aperture and depth from graben topography using an area balance technique. At each site we modeled with different combinations of input parameters which resulted in a total 27 models, of which 14 were found to be compatible with the inferred present-day graben-bounding faults. Based on these results we propose two conceptual models of dike-induced graben nucleation: 1) in a shallow dike intruding a low-compliance host rock, nucleation occurs through the linkage of near-surface mode I cracks and mode II discontinuities propagated from the dike tip, and 2) in a deep dike intruding a stiff host rock, shallow mode I cracks propagate to depth and collapse into normal faults in a dominantly tensile regime. A comparison of equivalent models under Martian versus Terrestrial conditions shows that in the former case failure is more likely to occur in a tension-dominated regime due to the greater weight of the dike induced stresses in a medium with a reduced lithostatic load. On Mars, dense networks of open fractures may have facilitated large fissure eruptions. On Earth, tensile failure occurs at very shallow depths whilst faults accommodate most of the deformation at depth. Our analytical modeling methodology explains intrusion experiments and observed dike-induced deformation. Therefore, the models provide plausible mechanisms of graben nucleation above intruding dikes. These need to be complemented by models which simulate long-term graben subsidence above dikes, which may be key to understand seismicity in tectonomagmatically active regions of Mars.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (MCIU)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76747
dc.identifier.doi10.1016/j.jsg.2022.104778
dc.identifier.issn01918141
dc.identifier.officialurlhttps://doi.org/10.1016/j.jsg.2022.104778
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S019181412200270X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73011
dc.journal.titleJournal of Structural Geology
dc.language.isoeng
dc.page.initial104778
dc.publisherElsevier
dc.relation.projectIDTECTOMARTE, PGC 2018- 095340-B-I00
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.keywordDikes
dc.subject.keywordGraben
dc.subject.keywordMars
dc.subject.keywordModels
dc.subject.ucmAstrofísica
dc.subject.ucmEdafología (Geología)
dc.subject.unesco2511 Ciencias del Suelo (Edafología)
dc.titleModeling of dike-induced graben nucleation in the Elysium region, Mars: The role of planetary gravity
dc.typejournal article
dc.volume.number167
dspace.entity.typePublication
relation.isAuthorOfPublicationb0242abd-d40a-4c55-83e1-c44f92c5cc1e
relation.isAuthorOfPublication492768a8-0b49-4d1c-951f-8326dd31e9e9
relation.isAuthorOfPublication.latestForDiscovery492768a8-0b49-4d1c-951f-8326dd31e9e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S019181412200270X-main.pdf
Size:
12.44 MB
Format:
Adobe Portable Document Format

Collections