Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A generalization of Andreev's theorem

dc.contributor.authorDíaz Sánchez, Raquel
dc.date.accessioned2023-06-20T09:36:37Z
dc.date.available2023-06-20T09:36:37Z
dc.date.issued2006
dc.description.abstractAndreev's Theorem studies the existence of compact hyperbolic polyhedra of a given combinatorial type and given dihedral angles, all of them acute. In this paper we consider the same problem but without any restriction on the dihedral angles. We solve it for the descendants of the tetrahedron, i.e. those polyhedra that can be obtained from the tetrahedron by successively truncating vertices; for instance, the first of them is the triangular prism.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15714
dc.identifier.doi10.2969/jmsj/1149166778
dc.identifier.issn0025-5645
dc.identifier.officialurlhttp://projecteuclid.org/euclid.jmsj/1149166778
dc.identifier.relatedurlhttp://projecteuclid.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50025
dc.issue.number2
dc.journal.titleJournal of the mathematical society of japan
dc.language.isoeng
dc.page.final349
dc.page.initial333
dc.publisherMath Soc Japan
dc.rights.accessRightsopen access
dc.subject.cdu514
dc.subject.keywordhyperbolic polyhedra
dc.subject.keyworddihedral angles
dc.subject.keywordAndreev's Theorem
dc.subject.ucmGeometría
dc.subject.unesco1204 Geometría
dc.titleA generalization of Andreev's theorem
dc.typejournal article
dc.volume.number58
dcterms.referencesE. M. Andreev, On convex polyhedra in Lobachevskii spaces, Math. USSR Sb., 10 (1970), 413–440. E. M. Andreev, Convex polyhedra of finite volume in Lobachevskii space, Math. USSR Sb., 12 (1970), 255–259. R. Benedetti and J. J. Risler, Real Algebraic and Semialgebraic Geometry, Actualités Math., Hermann, 1990. A. L. Cauchy, Sur les polygones et polyèdres, J. Ec. Polytechnique, 16 (1813), 87–99. R. Díaz, Non-convexity of the space of dihedral angles of hyperbolic polyhedra, C. R. Acad. Sci. Paris Série I, 325 (1997), 993–998. R. Díaz, A Characterization of Gram Matrices of Polytopes, Discrete Comput. Geom., 21 (1999), 581–601. F. R. Gantmacher, The theory of matrices, Vol.,I, Chelsea Publishing Company, New York, 1959. B. Iversen, Hyperbolic Geometry, Cambridge Univ. Press, 1992. J. Milnor, The Schläfli differential equality, In: Collected papers Vol.,1: Geometry, Houston, Publish or Perish Inc., 1994. I. Rivin and C. D. Hodgson, A characterization of compact convex polyhedra in hyperbolic 3-space, Invent. Math., 111 (1993), 77–111. E. B. Vinberg, Hyperbolic reflection groups, Russian Math. Surveys, 40 (1985), no.,1, p.,31–75.
dspace.entity.typePublication
relation.isAuthorOfPublicationad6ca69d-67a0-4e6d-9177-6a5439e93ce3
relation.isAuthorOfPublication.latestForDiscoveryad6ca69d-67a0-4e6d-9177-6a5439e93ce3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DiazRaquel05.pdf
Size:
231.08 KB
Format:
Adobe Portable Document Format

Collections