Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Application of Machine Learning Techniques to Analyze Patient Returns to the Emergency Department

dc.contributor.authorSarasa Cabezuelo, Antonio
dc.date.accessioned2023-06-17T09:12:16Z
dc.date.available2023-06-17T09:12:16Z
dc.date.issued2020
dc.description.abstractThe study of the quality of hospital emergency services is based on analyzing a set of indicators such as the average time of first medical attention, the average time spent in the emergency department, degree of completion of the medical report and others. In this paper, an analysis is presented of one of the quality indicators: the rate of return of patients to the emergency service less than 72 h from their discharge. The objective of the analysis was to know the variables that influence the rate of return and which prediction model is the best. In order to do this, the data of the activity of the emergency service of a hospital of a reference population of 290,000 inhabitants were analyzed, and prediction models were created for the binary objective variable (rate of return to emergencies) using the logistic regression techniques, neural networks, random forest, gradient boosting and assembly models. Each of the models was analyzed and the result shows that the best model is achieved through a neural network with activation function tanh, algorithm levmar and three nodes in the hidden layer. This model obtains the lowest mean squared error (MSE) and the best area under the curve (AUC) with respect to the rest of the models used.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67555
dc.identifier.doi10.3390/jpm10030081
dc.identifier.issn2075-4426
dc.identifier.officialurlhttps://doi.org/10.3390/jpm10030081
dc.identifier.relatedurlhttps://www.mdpi.com/2075-4426/10/3/81
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8388
dc.issue.number3
dc.journal.titleJournal of Personalized Medicine
dc.language.isoeng
dc.page.initial81
dc.publisherMDPI
dc.relation.projectIDCetrO+Spec (TIN2017-88092-R)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordmachine learning algorithms
dc.subject.keywordneural networks
dc.subject.keywordemergency medicine
dc.subject.ucmInformática (Informática)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.17 Informática
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleApplication of Machine Learning Techniques to Analyze Patient Returns to the Emergency Department
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication768e9865-e7a1-4ff7-8765-24f475180751
relation.isAuthorOfPublication.latestForDiscovery768e9865-e7a1-4ff7-8765-24f475180751

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jpm-10-00081-v2.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format

Collections