Finite extinction and null controllability via delayed feedback non-local actions
dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
dc.contributor.author | Casal, A.C. | |
dc.contributor.author | Vegas Montaner, José Manuel | |
dc.date.accessioned | 2023-06-20T00:11:20Z | |
dc.date.available | 2023-06-20T00:11:20Z | |
dc.date.issued | 2009-12-15 | |
dc.description.abstract | We give sufficient conditions to have the finite extinction for all solutions of linear parabolic reaction-diffusion equations of the type partial derivative u/partial derivative t - Lambda u = -M(t)u(t - tau, x) (1) with a delay term tau > 0, on Omega, an open set of R(N), M(t) is a bounded linear map on L(p)(Omega), u(t, x) satisfies a homogeneous Neumann or Dirichlet boundary condition. We apply this result to obtain distributed null controllability of the linear heat equation u(t) - Delta u = upsilon(t, x) by means of the delayed feedback term upsilon(t, x) = -M(t)u(t - tau, x). | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGISGPI (Spain) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15071 | |
dc.identifier.doi | 10.1016/j.na.2009.03.008 | |
dc.identifier.issn | 0362-546X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0362546X09004313 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42156 | |
dc.issue.number | 12 | |
dc.journal.title | Nonlinear analysis-theory methods & applications | |
dc.language.iso | eng | |
dc.page.final | 2022 | |
dc.page.initial | 2018 | |
dc.publisher | Pergamon-Elsevier Science | |
dc.relation.projectID | MTM2005-03463 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.6 | |
dc.subject.keyword | Finite extinction time | |
dc.subject.keyword | Delayed feedback control | |
dc.subject.keyword | Linear parabolic equations | |
dc.subject.ucm | Análisis numérico | |
dc.subject.unesco | 1206 Análisis Numérico | |
dc.title | Finite extinction and null controllability via delayed feedback non-local actions | |
dc.type | journal article | |
dc.volume.number | 71 | |
dcterms.references | E. Winston, J.A. Yorke, Linear delay differential equations whose solutions become identically zero, Rev. Roumaine Math. Pures Appl. 14 (1969) 885_887. J.K. Hale, Theory of Functional Differential Equations, Springer, New York, 1977. A. Casal, J.I. Diaz, J.M. Vegas, Finite extinction time via delayed feedback actions, Dyn. Contin. Discrete Impuls. Syst. Ser. A S2 (2007) 23_27. S Antontsev, J.I. Díaz, S. Shmarev, Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics, Birkäuser, Boston, 2002. K.S. Ha, Nonlinear Functional Evolutions in Banach Spaces, Kluwer, AA Dordrecht, 2003. M.N. Özisik, Boundary Value Problems of Heat Conduction, Dover, New York, 1989. I. Stakgold, Green's Functions and Boundary Value Problems, second edition, Wiley, New York, 1998. A. Friedman, M.A. Herrero, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. Appl. 124 (1987) 530_546. C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992. I.I. Vrabie, C0-Semigroups and Applications, North-Holland, Amsterdam, 2003. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
relation.isAuthorOfPublication | d300b4af-2d4b-46b7-a838-eff9a1de203e | |
relation.isAuthorOfPublication.latestForDiscovery | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 |
Download
Original bundle
1 - 1 of 1