Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Finite extinction and null controllability via delayed feedback non-local actions

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorCasal, A.C.
dc.contributor.authorVegas Montaner, José Manuel
dc.date.accessioned2023-06-20T00:11:20Z
dc.date.available2023-06-20T00:11:20Z
dc.date.issued2009-12-15
dc.description.abstractWe give sufficient conditions to have the finite extinction for all solutions of linear parabolic reaction-diffusion equations of the type partial derivative u/partial derivative t - Lambda u = -M(t)u(t - tau, x) (1) with a delay term tau > 0, on Omega, an open set of R(N), M(t) is a bounded linear map on L(p)(Omega), u(t, x) satisfies a homogeneous Neumann or Dirichlet boundary condition. We apply this result to obtain distributed null controllability of the linear heat equation u(t) - Delta u = upsilon(t, x) by means of the delayed feedback term upsilon(t, x) = -M(t)u(t - tau, x).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGISGPI (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15071
dc.identifier.doi10.1016/j.na.2009.03.008
dc.identifier.issn0362-546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0362546X09004313
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42156
dc.issue.number12
dc.journal.titleNonlinear analysis-theory methods & applications
dc.language.isoeng
dc.page.final2022
dc.page.initial2018
dc.publisherPergamon-Elsevier Science
dc.relation.projectIDMTM2005-03463
dc.rights.accessRightsrestricted access
dc.subject.cdu519.6
dc.subject.keywordFinite extinction time
dc.subject.keywordDelayed feedback control
dc.subject.keywordLinear parabolic equations
dc.subject.ucmAnálisis numérico
dc.subject.unesco1206 Análisis Numérico
dc.titleFinite extinction and null controllability via delayed feedback non-local actions
dc.typejournal article
dc.volume.number71
dcterms.referencesE. Winston, J.A. Yorke, Linear delay differential equations whose solutions become identically zero, Rev. Roumaine Math. Pures Appl. 14 (1969) 885_887. J.K. Hale, Theory of Functional Differential Equations, Springer, New York, 1977. A. Casal, J.I. Diaz, J.M. Vegas, Finite extinction time via delayed feedback actions, Dyn. Contin. Discrete Impuls. Syst. Ser. A S2 (2007) 23_27. S Antontsev, J.I. Díaz, S. Shmarev, Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics, Birkäuser, Boston, 2002. K.S. Ha, Nonlinear Functional Evolutions in Banach Spaces, Kluwer, AA Dordrecht, 2003. M.N. Özisik, Boundary Value Problems of Heat Conduction, Dover, New York, 1989. I. Stakgold, Green's Functions and Boundary Value Problems, second edition, Wiley, New York, 1998. A. Friedman, M.A. Herrero, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. Appl. 124 (1987) 530_546. C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992. I.I. Vrabie, C0-Semigroups and Applications, North-Holland, Amsterdam, 2003.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublicationd300b4af-2d4b-46b7-a838-eff9a1de203e
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
11.pdf
Size:
237.05 KB
Format:
Adobe Portable Document Format

Collections