Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses

dc.contributor.authorMartínez Matos, Óscar
dc.contributor.authorHernández Garay, María de la Paz
dc.contributor.authorGonzález Izquierdo, Jesús
dc.contributor.authorCalvo Padilla, María Luisa
dc.contributor.authorVaveliuk, Pablo
dc.contributor.authorCheben, Pavel
dc.contributor.authorBañares Morcillo, Luis
dc.date.accessioned2023-06-20T03:38:59Z
dc.date.available2023-06-20T03:38:59Z
dc.date.issued2011-01-17
dc.description©2011 Optical Society of America. We thank J. A. Rodrigo and R. Weigand for helpful discussions. The financial support of the Spanish Ministry of Innovation and Science, under grant TEC2008-1045 is acknowledged. One of us (M.P. Hernandez-Garay) acknowledges the MAEC-AECID (Spain) and CONACyT (Mexico) grants, P. Vaveliuk is grateful to CNPq (Brazilian federal grant agency) for financial support. We thank to Chemical Reaction Dynamics and Femtochemistry Group: J. G. Izquierdo and L. Bañares (Spanish Ministry of Science and Innovation (MICINN) through Grant CTQ2008-02578/BQU, and Consolider SAUUL CSD2007-00013). Finally, the authors gratefully the reviewers’s suggestions.
dc.description.abstractThe majority of the applications of ultrashort laser pulses require a control of its spectral bandwidth. In this paper we show the capability of volume phase holographic gratings recorded in photopolymerizable glasses for spectral pulse reshaping of ultrashort laser pulses originated in an Amplified Ti: Sapphire laser system and its second harmonic. Gratings with high laser induce damage threshold (LIDT) allowing wide spectral bandwidth operability satisfy these demands. We have performed LIDT testing in the photopolymerizable glass showing that the sample remains unaltered after more than 10 million pulses with 0,75 TW/cm^2 at 1 KHz repetition rate. Furthermore, it has been developed a theoretical model, as an extension of the Kogelnik's theory, providing key gratings design for bandwidth operability. The main features of the diffracted beams are in agreement with the model, showing that non-linear effects are negligible in this material up to the fluence threshold for laser induced damage. The high versatility of the grating design along with the excellent LIDT indicates that this material is a promising candidate for ultrashort laser pulses manipulations.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación-MICINN, España
dc.description.sponsorshipMinisterio de Asuntos Exteriores y de Cooperación, España
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología CONACyT, México
dc.description.sponsorshipCNPq (Brazilian federal grant agency)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25139
dc.identifier.doi10.1364/OE.19.001516
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OE.19.001516
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44155
dc.issue.number2
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final1527
dc.page.initial1516
dc.publisherOptical Society of America
dc.relation.projectIDTEC2008-1045
dc.relation.projectIDCTQ2008-02578/BQU
dc.relation.projectIDConsolider SAUUL CSD2007-00013
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordLaser-Induced Breakdown
dc.subject.keywordTransparent Materials
dc.subject.keywordDamage Threshold
dc.subject.keywordEfficiency
dc.subject.keywordBragg
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleFemtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses
dc.typejournal article
dc.volume.number19
dcterms.references1. M. E. Fermann, A. Galvanauskas, and G. Sucha, eds., Ultrafast Lasers Technology and Applications, (Marcel Dekker Inc. New York, USA, 2003). 2. C. E. Webb, and J. D. C. Jones, Handbook of Laser Technology and Applications (Institute of Physic publishing, USA, 2004), Chap. 2.3.5. See also: Handbook of Optics (McGraw-Hill Co. Third Ed., Vol. II, 2010), Chap. 20. 3. F. C. De Schryver, S. De Feyter, and G. Schweitzer, eds., Femtochemistry, (Wiley-VCH GmbH, Weinheim, Germany, 2001). 4. H. Ahmed, Zewail, Physical Biology from Atoms to Medicine (Imperial College Press, London, UK, 2008). 5. R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials”, Nat. Photonics 2(4), 219–225 (2008). 6. M. Andrew, Weiner, Ultrafast Optics (John Wiley & Sons, Ltd, New Jersey, USA, 2009). 7. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, and H. Walther, “Vortices in femtosecond laser fields”, Opt. Lett. 29(16), 1942–1944 (2004). 8. O. Martínez-Matos, J. A. Rodrigo, M. P. Hernández-Garay, J. G. Izquierdo, R. Weigand, M. L. Calvo, P. Cheben, P. Vaveliuk, and L. Bañares, “Generation of femtosecond paraxial beams with arbitrary spatial distribution”, Opt. Lett. 35(5), 652–654 (2010). 9. O. V. Andreeva, V. G. Bespalov, V. N. Vasil’ev, A. A. Gorodetskiî, A. P. Kushnarenko, G. V. Lukomskiî, and A. A. Paramonov, “Investigation of the spectral selectivity of volume holograms with femtosecond pulsed radiation”, Opt. Spect. 96(2), 157–162 (2004). 10. W. Wilson, A. Hoskins, M. Ayres, A. Hill, and K. Curtis, Introduction to Holographic Data Recording, in Holographic Data Storage: From Theory to Practical Systems, K. Curtis, L. Dhar, A. Hill, W. Wilson and M. Ayres, eds., (John Wiley & Sons, Ltd, Chichester, UK., 2010). 11. A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates”, Appl. Opt. 48(22), 4348–4353 (2009). 12. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass”, Appl. Opt. 38(4), 619–627 (1999). 13. R. Kashyap, Fiber Bragg Gratings (Elsevier, USA, 1999). 14. P. Rambo, J. Schwarz, and I. Smith, “Development of a mirror backed volume phase grating with potential for large aperture and high damage threshold”, Opt. Commun. 260(2), 403–414 (2006). 15. H. Li, H. Xiong, and Y. Tang, “Study on the laser-induced damage threshold of sol-gel ZO2-PVP coating”, Chin. Opt. Lett. 8(2), 241–243 (2010). 16. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics”, Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). 17. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings”, Opt. Lett. 20(8), 940–942 (1995). 18. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, “Design of high-efficiency dielectric reflection gratings”, J. Opt. Soc. Am. A 14(5), 1124–1136 (1997). 19. F. del Monte, O. Martínez-Matos, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species”, Adv. Mater. 18(15), 2014–2017 (2006). 20. P. Cheben, and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage”, Appl. Phys. Lett. 78(11), 1490–1492 (2001). 21. O. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species”, Appl. Phys. Lett. 91(14), 1411151–1411153 (2007). 22. M. L. Calvo, and P. Cheben, “Photopolymerizable sol–gel nanocomposites for holographic recording”, J. Opt. A, Pure Appl. Opt. 11(2), 1–11 (2009). 23. O. Martínez-Matos, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “Polarization and phase-shift properties of high spatial frequency holographic gratings in a photopolymerizable glass”, Opt. Lett. 34(4), 485–487 (2009). 24. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings”, Bell Syst. Tech. J. 48, 2909–2947 (1969). 25. M. G. Moharam, and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes”, Appl. Opt. 17(11), 1757–1759 (1978). 26. E. A. Bahaa Saleh and M. C. Teich, Fundamental of Photonics, (John Wiley & Sons eds., USA, 2007), Chap.22. 27. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses”, Meas. Sci. Technol. 12(11), 1784–1794 (2001). 28. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration”, Phys. Rev. Lett. 82(19), 3883–3886 (1999).
dspace.entity.typePublication
relation.isAuthorOfPublicationb6643c3d-f635-48d3-a642-922a4b2e595c
relation.isAuthorOfPublicatione2846481-608d-43dd-a835-d70f73a4dd48
relation.isAuthorOfPublicationb2340482-256f-41d0-ad15-29806cf6a753
relation.isAuthorOfPublication.latestForDiscoveryb6643c3d-f635-48d3-a642-922a4b2e595c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martinez-Matos08libre.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format

Collections