Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Excited-state phase transition leading to symmetry-breaking steady states in the Dicke model

dc.contributor.authorPuebla, Ricardo
dc.contributor.authorRelaño Pérez, Armando
dc.contributor.authorRetamosa Granado, Joaquín
dc.date.accessioned2023-06-19T13:26:33Z
dc.date.available2023-06-19T13:26:33Z
dc.date.issued2013-02-19
dc.description© 2013 American Physical Society. The authors thank Borja Peropadre for his valuable comments. R.P. thanks J. M. Udias for his financial support. This work is supported in part by Spanish Government grants for the research projects FIS2009 11621-C02-01, FIS2009-07277, and CSPD-2007-00042 Ingenio2010, and by the Universidad Complutense de Madrid Grant No. UCM-910059.
dc.description.abstractWe study the phase diagram of the Dicke model in terms of the excitation energy and the radiation-matter coupling constant lambda. Below a certain critical value lambda(c), all the energy levels have a well-defined parity. For lambda > lambda(c) the energy spectrum exhibits two different phases separated by a critical energy E-c that proves to be independent of lambda. In the upper phase, the energy levels have also a well-defined parity, but below E-c the energy levels are doubly degenerated. We show that the long-time behavior of appropriate parity-breaking observables distinguishes between these two different phases of the energy spectrum. Steady states reached from symmetry-breaking initial conditions restore the symmetry only if their expected energies are above the critical. This fact makes it possible to experimentally explore the complete phase diagram of the excitation spectrum of the Dicke model.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Government
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27431
dc.identifier.doi10.1103/PhysRevA.87.023819
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.87.023819
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33705
dc.issue.number2
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2009-11621-C02-01
dc.relation.projectIDFIS2009-07277
dc.relation.projectIDCSPD-2007-00042-Ingenio2010
dc.relation.projectIDUCM-910059
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keyword2-Level Atom
dc.subject.keywordField
dc.subject.keywordCavity
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleExcited-state phase transition leading to symmetry-breaking steady states in the Dicke model
dc.typejournal article
dc.volume.number87
dcterms.references[1] R. H. Dicke, Phys. Rev. 93, 99 (1954). [2] K. Hepp and E. H. Lieb, Ann. Phys. (NY) 76, 360 (1973); Y. K. Wang and F. T. Hioe, Phys. Rev. A 7, 831 (1973); H. J. Carmichael, C. W. Gardiner, and D. F. Walls, Phys. Lett. A 46, 47 (1973). [3] C. Emary and T. Brandes, Phys. Rev. Lett. 90, 044101 (2003); Phys. Rev. E 67, 066203 (2003). [4] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger, Phys. Rev. Lett. 107, 140402 (2011). [5] K. Rzazewsky, K. Wodkiewicz, and W. Zakowicz, Phys. Rev. Lett. 35, 432 (1975); K. Rzazewsky and W. Wodkiewicz, Phys. Rev. A 13, 1967 (1976); J. M. Knight, Y. Aharonov, and G. T. C. Hsieh, ibid. 17, 1454 (1978); I. Bialynicki-Birula and K. Rzazewsky, ibid. 19, 301 (1979). [6] P. Nataf and C. Ciuti, Nature Commun. 1, 72 (2010); O. Viehmann, J. von Delft, and F. Marquardt, Phys. Rev. Lett. 107, 113602 (2011). [7] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature (London) 464, 1301 (2010). [8] V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, Phys. Rev. Lett. 108, 043003 (2012). [9] M. A. Alcalde, M. Bucher, C. Emary, and T. Brandes, Phys. Rev. E 86, 012101 (2012). [10] A. Altland and F. Haake, N. J. Phys 14, 073011 (2012). [11] J. Vidal and S. Dusuel, Europhys. Lett. 74, 817 (2006). [12] P. Pérez Fernández, P. Cejnar, J. M. Arias, J. Dukelsky, J. E. García Ramos, and A. Relaño, Phys. Rev. A 83, 033802 (2011). [13] P. Pérez Fernández, A. Relaño, J. M. Arias, P. Cejnar, J. Dukelsky, and J. E. García Ramos, Phys. Rev. E 83, 046208 (2011). [14] K. Banaszek, C. Radzewicz, K. Wodkiewicz, and J. S. Krasinski, Phys. Rev. A 60, 674 (1999); S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J. Raimond, and S. Haroche, Nature (London) 455, 510 (2008). [15] P. Reimann and M. Kastner, New. J. Phys. 14, 043020 (2012); A. J. Short, ibid. 13, 053009 (2011).
dspace.entity.typePublication
relation.isAuthorOfPublication53fed635-944b-485a-b13a-ea8f9355b7aa
relation.isAuthorOfPublication1d1118d9-569f-4139-988b-921ac5a8407c
relation.isAuthorOfPublication.latestForDiscovery53fed635-944b-485a-b13a-ea8f9355b7aa

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Relano3libre.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format

Collections