Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Correspondence between long-range and short-range spin glasses

dc.contributor.authorBaños, R.A.
dc.contributor.authorFernández Pérez, Luis Antonio
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorYoung, A.P.
dc.date.accessioned2023-06-20T04:12:08Z
dc.date.available2023-06-20T04:12:08Z
dc.date.issued2012-10-17
dc.description© 2012 American Physical Society. We thank G. Parisi and M. Moore for discussions. A.P.Y. acknowledges support from the NSF through Grant No. DMR- 0906366 and a generous allocation of computer time from the Hierarchical Systems Research Foundation. The shortrange simulations, and part of the long-range simulations, were carried out on ARAGRID and BIFI computers. R.A.B., L.A.F., and V.M.M. acknowledge partial financial support from MICINN, Spain, Contract No. FIS2009 12648-C03. R.A.B. was also supported by the FPI Program (Diputación de Aragón, Spain). V.M.M. acknowledges the hospitality of the Physics Department of UCSC (visit funded by the Del Amo Foundation), where part of this work was performed.
dc.description.abstractWe compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power σ of the distance. We show that there is a value of σ of the long-range model for which the critical behavior is very similar to that of the short range model in four dimensions. We also study a value of σ for which we find the critical behavior to be compatible with that of the three-dimensional model, although we have much less precision than in the four-dimensional case.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipNSF
dc.description.sponsorshipFPI Program (Diputación de Aragón, Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37709
dc.identifier.doi10.1103/PhysRevB.86.134416
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://doi.org/10.1103/PhysRevB.86.134416
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45036
dc.issue.number13
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2009-12648-C03
dc.relation.projectIDDMR- 0906366
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.cdu53
dc.subject.keywordCritical exponents
dc.subject.keywordIsing-model
dc.subject.keywordSimulations.
dc.subject.ucmFísica (Física)
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.unesco22 Física
dc.titleCorrespondence between long-range and short-range spin glasses
dc.typejournal article
dc.volume.number86
dcterms.references1) K. Binder, A. P. Young, Rev. Mod. Phys., 58, 801 (1986). 2) Finite Size Scaling and Numerical Simulation of Statistical Systems, edited by V. Privman (World Scientific, Singapore, 1990). 3) D. Amit, V. Matín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore, 2005). 4) H. G. Katzgraber, A. P. Young, Phys. Rev. B, 67, 134410 (2003). 5) H. G. Katzgraber, A. P. Young, Phys. Rev. B, 68, 224408 (2003). 6) H. G. Katzgraber, A. P. Young, Phys. Rev. B, 72, 184416 (2005). 7) H. G. Katzgraber, D. Larson, A. P. Young, Phys. Rev. Lett., 102, 177205 (2009). 8) D. Larson, H. G. Katzgraber, M. A. Moore, A. P. Young, Phys. Rev. B, 81, 064415 (2010). 9) A. Sharma, A. P. Young, Phys. Rev. B, 83, 214405 (2011). 10) L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, J. J. Ruiz Lorenzo, Phys. Rev. Lett., 101, 107203 (2008). 11) L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, J. J. Ruiz Lorenzo, Phys. Rev. Lett., 103, 267201 (2009). 12) L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, J. J. Ruiz Lorenzo, Philos. Mag., 91, 1917 (2011). 13) A. B. Harris, T. C. Lubensky, J.-H. Chen, Phys. Rev. Lett., 36, 415 (1976). 14) G. Kotliar, P. W. Anderson, D. L. Stein, Phys. Rev. B, 27, 602 (1983). 15) M. A. Moore (private communication). 16) G. Parisi (private communication). 17) M. E. Fisher, S.-k. Ma, B. G. Nickel, Phys. Rev. Lett., 29, 917 (1972). 18) M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B, 78, 214205 (2008). 19) M. E. J. Newman, G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, New York, 1999). 20) Actually, some long-range models with power-law interactions can be simulated efficiently. Unfortunately, the cluster algorithms of Refs. 21 and 22 do not work for spin glasses. On the other hand, the stochastic cutoff method (Ref. 23) does not rely on a cluster update, but its efficiency for simulating spin glasses with long-range interactions is yet to be assessed. 21) E. Luijten and H. W. J. Blöte, Phys. Rev. Lett., 76, 1557 (1996). 22) K. Fukui, S. Todo, J. Comput. Phys., 228, 2629 (2009). 23) M. Sasaki, F. Matsubara, J. Phys. Soc. Jpn., 77, 024004 (2008). 24) F. Beyer, M. Weigel, M. A. Moore, Phys. Rev. B, 86, 014431 (2012). 25) M. Wittmann, A. P. Young, Phys. Rev. E, 85, 041104 (2012). 26) L. Viana, A. J. Bray, J. Phys. C, 18, 3037 (1985). 27) L. A. FernÁndez, V. MartÍn-Mayor, G. Parisi, B. Seoane, Phys. Rev. B, 81, 134403 (2010). 28) We run the Monte Carlo of the bonds for 106 sweeps. We are confident about graph equilibration because we compared the outcomes of widely differing starting points for the simulation: either a graph with the topology of a crystal with periodic boundary conditions, or the random graph described in the main text. For either type of starting point, we compared several graph properties, in particular the bond-length distribution and the “Hamiltonian” defined in Eq. (15). In all cases studied, we found that memory of the starting configuration was lost after 105 sweeps, but we simulated for a total 106 sweeps to be on the safe side. 29) B. Cooper, B. Freedman, D. Preston, Nucl. Phys. B, 210, 210 (1982). 30) M. Palassini, S. Caracciolo, Phys. Rev. Lett., 82, 5128 (1999). 31) H. G. Ballesteros, A. Cruz, L. A. Fernández, V. Martín-Mayor, J. Pech, J. J. Ruiz-Lorenzo, A. Tarancón, P. Téllez, C. L. Ullod, C. Ungil, Phys. Rev. B, 62, 14237 (2000). 32) K. Binder, Z. Phys. B, 43, 119 (1981). 33) H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, J. Pech, A. Muñoz Sudupe, Phys. Lett. B, 387, 125 (1996). 34) M. P. Nightingale, Physica A, 83, 561 (1976). 35) H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J. J. Ruiz-Lorenzo, Phys. Rev. B, 58, 2740 (1998). 36) M. Weigel, W. Janke, Phys. Rev. Lett., 102, 100601 (2009). 37) K. Hukushima, K. Nemoto, J. Phys. Soc. Jpn., 65, 1604 (1996). 38) E. Marinari, F. Zuliani, J. Phys. A, 32, 7447 (1999). 39) T. Jörg, H. G. Katzgraber, Phys. Rev. B, 77, 214426 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublication146096b1-5825-4230-8ad9-b2dad468673b
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery146096b1-5825-4230-8ad9-b2dad468673b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezPérezLuisAntonio07LIBRE.pdf
Size:
735.43 KB
Format:
Adobe Portable Document Format

Collections