Publication:
Brane oscillations and the cosmic coincidence problem

dc.contributor.authorLópez Maroto, Antonio
dc.date.accessioned2023-06-20T10:47:33Z
dc.date.available2023-06-20T10:47:33Z
dc.date.issued2004-05-24
dc.description© 2004 The American Physical Society. I would like to thank A. Dobado and J. A. R. Cembranos for useful comments. This work has been partially supported by the DGICYT (Spain) under Projects No. FPA 2000-0956 and No. BFM2002-01003.
dc.description.abstractWe show that, under general assumptions, in six-dimensional brane-world models with compactified large extra dimensions, the energy density of brane oscillations scales as that of cold dark matter and its present value is compatible with observations. This value is obtained from the only dimensional scale in the theory, namely, the fundamental scale of gravity in six dimensions M(6)similar to1 TeV, without any fine-tuning or the introduction of additional mass scales apart from the large size of the extra dimensions. It has been suggested that the same kind of model could provide also the correct magnitude of the cosmological constant. This observation might be relevant for the resolution of the cosmic coincidence problem in the brane-world scenario.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27264
dc.identifier.citation[1] D.N. Spergel et al., Astrophys. J., Suppl. Ser. 148, 175 (2003). [2] B. Ratra and P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988); P.J.E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003); R.R. Caldwell, R. Dave, and P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998); I. Zlatev, L-M. Wang, and P.J. Steinhardt, ibid. 82, 896 (1999). [3] T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000); C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000). [4] M. Malquarti, E.J. Copeland, and A.R. Liddle, Phys. Rev. D 68, 023512 (2003). [5] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep. 267, 195 (1996); C. Muñoz, hep-ph/0309346. [6] J.A. Frieman, C.T. Hill, A. Stebbins, and I. Waga, Phys. Rev. Lett. 75, 2077 (1995). [7] A. Albrecht, C.P. Burgess, F. Ravndal, and C. Skordis, Phys. Rev. D 65, 123507 (2002). [8] L. Perivolaropoulos and C. Sourdis, Phys. Rev. D 66, 084018 (2002). [9] R. Sundrum, Phys. Rev. D 59, 085010 (1999). [10] J.-W. Chen, M.A. Luty, and E. Ponton, J. High Energy Phys. 09, 012 (2000). [11] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); Phys. Rev. D 59, 086004 (1999); I. Antoniadis, Phys. Lett. B 246, 377 (1990). [12] P. Candelas and S. Weinberg, Nucl. Phys. B237, 397 (1984). [13] M. Pietroni, Phys. Rev. D 67, 103523 (2003). [14] M. Peloso and E. Poppitz, Phys. Rev. D 68, 125009 (2003). [15] Y. Aghababaie, C.P. Burgess, S.L. Parameswaran, and F. Quevedo, Nucl. Phys. B680, 389 (2004). [16] J.A.R. Cembranos, A. Dobado, and A.L. Maroto, Phys. Rev. Lett. 90, 241301 (2003). [17] A.L. Maroto, Phys. Rev. D 69, 043509 (2004). [18] R. Sundrum, Phys. Rev. D 59, 085009 (1999). [19] A. Dobado and A.L. Maroto, Nucl. Phys. B592, 203 (2001). [20] J. Alcaraz, J.A.R. Cembranos, A. Dobado, and A.L. Maroto, Phys. Rev. D 67, 075010 (2003). [21] J.A.R. Cembranos, A. Dobado, and A.L. Maroto, Phys. Rev. D 65, 026005 (2002). [22] J. Preskill, M.B. Wise, and F. Wilczek, Phys. Lett. 120B, 127 (1983); J.A. Frieman and A.H. Jaffe, Phys. Rev. D 45, 2674 (1992). [23] M.S. Turner, Phys. Rev. D 28, 1243 (1983). [24] J.A.R. Cembranos, A. Dobado, and A.L. Maroto, Phys. Rev. D 68, 103505 (2003). [25] F. Leblond, R.C. Myers, and D.J. Winters, J. High Energy Phys. 07, 031 (2001). [26] J.M. Cline, J. Descheneau, M. Giovannini, and J. Vinet, J. High Energy Phys. 06, 048 (2003). [27] P. Bostock, R. Gregory, I. Navarro, and J. Santiago, Phys. Rev. Lett. (to be published), hep-th/0311074. [28] T. Kugo and K. Yoshioka, Nucl. Phys. B594, 301 (2001). [29] P. Creminelli and A. Strumia, Nucl. Phys. B596, 125 (2001). [30] J.A.R. Cembranos, A. Dobado, and A.L. Maroto (in preparation).
dc.identifier.doi10.1103/PhysRevD.69.101304
dc.identifier.issn0556-2821
dc.identifier.officialurlhttp://journals.aps.org/prd/abstract/10.1103/PhysRevD.69.101304
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51230
dc.issue.number10
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFPA 2000-0956
dc.relation.projectIDBFM2002-01003
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordNambu-goldstone bosons
dc.subject.keywordSmall cosmological constant
dc.subject.keywordScalar-field
dc.subject.keywordDimensions
dc.subject.keywordEnergy
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleBrane oscillations and the cosmic coincidence problem
dc.typejournal article
dc.volume.number69
dspace.entity.typePublication
relation.isAuthorOfPublicatione14691a1-d3b0-47b7-96d5-24d645534471
relation.isAuthorOfPublication.latestForDiscoverye14691a1-d3b0-47b7-96d5-24d645534471
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MarotoAL49libre.pdf
Size:
61.67 KB
Format:
Adobe Portable Document Format
Collections