Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum invariants for the graph isomorphism problem

dc.contributor.authorCruz Calvo, Hernán Indíbil de la
dc.contributor.authorPelayo, Fernando L.
dc.contributor.authorPascual, Vicente
dc.contributor.authorPaulet González, Jose Javier
dc.contributor.authorCuartero Gómez, Fernando
dc.contributor.authorLlana Díaz, Luis Fernando
dc.contributor.authorMezzini, Mauro
dc.date.accessioned2023-06-22T12:29:45Z
dc.date.available2023-06-22T12:29:45Z
dc.date.issued2022-10-07
dc.description.abstractGraph Isomorphism is such an important problem in computer science, that it has been widely studied over the last decades. It is well known that it belongs to NP class, but is not NP-complete. It is thought to be of comparable difficulty to integer factorisation. The best known proved algorithm to solve this problem in general, was proposed by László Babai and Eugene Luks in 1983. Recently, there has been some research in the topic by using quantum computing, that also leads the present piece of research. In fact, we present a quantum computing algorithm that defines an invariant over Graph Isomorphism characterisation. This quantum algorithm is able to distinguish more non-isomorphic graphs than most of the known invariants so far. The proof of correctness and some hints illustrating the extent and reason of the improvement are also included in this paper.
dc.description.departmentSección Deptal. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipComunidad de Madrid/FEDER
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75648
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72679
dc.language.isoeng
dc.relation.projectIDAwESOMe (PID2021- 122215NB-C31)
dc.relation.projectIDFORTE-CM (S2018/TCS-4314)
dc.relation.projectID(220426UCTR)
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu510.52
dc.subject.ucmCibernética matemática
dc.subject.unesco1207.03 Cibernética
dc.titleQuantum invariants for the graph isomorphism problem
dc.typejournal article
dcterms.references[1] R. C. Read and D. G. Corneil, The graph isomorphism disease, Journal of Graph Theory 1, 339 (1977). [2] L. Babai and E. M. Luks, Canonical labeling of graphs, in Proc. of the ACM STOC Conference (IOS Press Amsterdam, 1983) pp. 171–183. [3] L. Babai, D. Y. Grigoryev, and D. M. Mount, Isomorphism of graphs with bounded eigenvalue multiplicity, in Proc. of the 14th Annual ACM Symposium on Theory of Computing (1984) pp. 310–324. [4] B. D. McKay, Practical graph isomorphism, in 10th. Manitoba Conference on Numerical Mathematics and Computing (1981) pp. 45–87. [5] P. Darga, K. Sakallah, and I. Markov, Faster symmetry discovery using sparsity of symmetries, in Proc. of the 45th Design Automation Conference (2004) pp. 149–154. [6] T. Junttila and P. Kaski, Engineering an efficient canonical labeling tool for large and sparse graphs, in Proc. of the 9th Workshop on Algorithm Engineering and Experiments (2007) pp. 135–149. [7] J. López-Presa and A. Fernández Anta, Fast algorithm for graph isomorphism testing, in Proc. of the 8th International Symposium on Experimental Algorithms (2009) pp. 221–232. [8] L. Babai, Graph isomorphism in quasipolynomial time [extended abstract], in Proc. of the 48th Annual Symposium on Theory of Computing (2016). [9] D. Conte, P. Foggia, C. Sansone, and M. Vento, Thirty years of graph matching in pattern recognition, Intl. Journal of Pattern Recognition and AI 18, 265 (2004). [10] S. Hallgren, A. Russell, and A. Ta-Shma, The hidden subgroup problem and quantum computation using group representations, SIAM Journal on Computing 32, 916 (2003). [11] F. Gaitan and L. Clark, Graph isomorphism and adiabatic quantum computing, Phys. Rev. A 89, 022342 (2014). [12] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. V. d. Nest, and H. Briegel, Entanglement in graph states and its applications, in 2006 International School of Physics “Enrico Fermi”, Vol. 162 (IOS Press Amsterdam, 2006) pp. 115–218. [13] M. Hein, J. Eisert, and H. J. Briegel, Multiparty entanglement in graph states, Phys. Rev. A 69, 062311 (2004). [14] L. Zhao, C. A. Pérez-Delgado, and J. F. Fitzsimons, Fast graph operations in quantum computation, Phys. Rev. A 93, 032314 (2016). [15] P. W. Mills, R. P. Rundle, J. H. Samson, S. J. Devitt, T. Tilma, V. M. Dwyer, and M. J. Everitt, Quantum invariants and the graph isomorphism problem, Phys. Rev. A 100, 052317 (2019). [16] R. P. Rundle, P. W. Mills, T. Tilma, J. H. Samson, and M. J. Everitt, Simple procedure for phase-space measurement and entanglement validation, Phys. Rev. A 96, 022117 (2017). [17] A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem, arXiv 10.48550/ARXIV.QUANT-PH/9511026 (1995). [18] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review 41, 303 (1999). [19] G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and H. Weinfurter, Permutationally invariant quantum tomography, Phys. Rev. Lett. 105, 250403 (2010). [20] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000). [21] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969). [22] C. Gidney, Quirk Quantum Simulator (https://github.com/Strilanc/Quirk, cited October 2021). [23] N. Biggs, Algebraic Graph Theory (Cambridge University Press, 1974).
dspace.entity.typePublication
relation.isAuthorOfPublication680f556a-4f1b-4eda-9add-da2c9b24796a
relation.isAuthorOfPublication.latestForDiscovery680f556a-4f1b-4eda-9add-da2c9b24796a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
llana_quantum.pdf
Size:
366 KB
Format:
Adobe Portable Document Format

Collections