Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Ring kinetic-theory for tagged-particle problems in lattice gases

dc.contributor.authorBrito, Ricardo
dc.contributor.authorErnst, M. H.
dc.date.accessioned2023-06-20T18:47:13Z
dc.date.available2023-06-20T18:47:13Z
dc.date.issued1992-07-15
dc.description©1992 The American Physical Society. It is a pleasure to thank J.W. Dufty, D. Frenkel, M. van der Hoef, and G.A. van Velzen for many stimulating and clarifying discussions. R.B. acknowledges support from a DGICYT Project No. PB88-0140 and M.H.E from a NATO Collaborative Research Grant.
dc.description.abstractThe kinetic theory for tagged-particle problems in lattice-gas cellular automata is extended beyond Boltzmann's mean-field approximation by including correlated ring-type collisions. This theory provides explicit expressions for the velocity autocorrelation function (VACF) for all times in terms of the ring-collision integral, as well as corrections to the Boltzmann values of the transport coefficients. For times long compared to the mean free time, the ring integral equation yields the phenomenological mode-coupling theory and the long-time tails. For intermediate times it describes a slow transition from initial exponential decay to the long-time tails. At short times the ring kinetic theory is exact. In particular, deviations from the Boltzmann result in the VACF of three-dimensional systems after two time steps are calculated explicitly and compared with computer simulations.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22132
dc.identifier.doi10.1103/PhysRevA.46.875
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://pra.aps.org/pdf/PRA/v46/i2/p875_1
dc.identifier.relatedurlhttp://pra.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58614
dc.issue.number2
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.page.final887
dc.page.initial875
dc.publisherAmerican Physical Society
dc.relation.projectIDPB88-0140
dc.relation.projectIDNATO Collaborative Research Grant
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordVelocity Autocorrelation Function
dc.subject.keywordCellular-Automata Fluids
dc.subject.keywordMode-Coupling Theory
dc.subject.keywordLong-Time Tails
dc.subject.keywordFaster-Than-T-1 Decay
dc.subject.keywordDiffusion
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleRing kinetic-theory for tagged-particle problems in lattice gases
dc.typejournal article
dc.volume.number46
dcterms.references[1] Lattice Gas Methods for Partial Differential Equations, edited by G.D. Doolen, reprint volume (Addison-Wesley, Reading, MA, 1990). [2] U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.P. Rivet, Complex Syst. 1, 649 (1987); see also [1], p. 75. [3] D. Frenkel and M.H. Ernst, Phys. Rev. Lett. 63, 2165 (1989). [4] M.A. van der Hoef and D. Frenkel, Physica D 47, 191 (1991). [5] B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 1 (1970). [6] T. Naitoh, M.H. Ernst, and J.W. Dufty, Phys. Rev. A 42, 7187 (1990); M.H. Ernst, Physica D 47, 198 (1990). [7] T.R. Kirkpatrick and M.H. Ernst, Phys. Rev. A 44, 8051 (1991). [8] R. Brito and M.H. Ernst, Phys. Rev. A 43, 8384 (1991). [9] M.H. Ernst, G.A. van Velzen, and P.M. Binder, Phys. Rev. A 39, 4327 (1989);G.A. van Velzen and M.H. Ernst, J. Phys. A 22, 4611 (1989); G.A. van Velzen, ibid 23, 4953 (1990). [10] W. Taylor IV and B. Boghosian, Phys. Rev. Lett. (to be published) . [11] M.H. Ernst and T. Naitoh, J. Phys. A 24, 2555 (1991). [12] M. van der Hoef and D. Frenkel, Phys. Rev. A 41, 42 (1990). [13] M. H. Ernst and J.R. Dorfman, Physica A 61, 157 (1979). [14] G. A. van Velzen, R. Brito, and M.H. Ernst, J. Stat. Phys. (to be published). [15] R. Brito, M.H. Ernst, and T.R. Kirkpatrick, in Discrete Models of Fluid Dynamics, edited by A.S. Alves (World Scientific, Singapore, 1991), p. 198. [16] L.S. Luo, H. Chen, S. Chen, G.D. Doolen and Y.C. Lee, Phys. Rev. A 43, 7097 (1991). [17] M.H. Ernst, E. Hauge, and J.M.J. van Leeuwen, J. Stat. Phys. 15, 7 (1976). [18] T. Naitoh, M.H. Ernst, M. van der Hoef, and D. Frenkel, Phys. Rev. A 44, 2484 (1991),and (unpublished). [19] M. Dijkstra, M.A. van der Hoef, and D. Frenkel, Europhys. Lett. 17, 39 (1992). [20] M.A. van der Hoef and D. Frenkel, Phys. Rev. Lett. 66, 1591 (1991);J.A. Leegwater and G. Szamel, ibid. 67, 4 (1991).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito35libre.pdf
Size:
677.94 KB
Format:
Adobe Portable Document Format

Collections