Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modelling and forecasting time series sampled at different frequencies

dc.contributor.authorCasals Carro, José
dc.contributor.authorJerez Méndez, Miguel
dc.contributor.authorSotoca López, Sonia
dc.date.accessioned2023-06-20T12:50:37Z
dc.date.available2023-06-20T12:50:37Z
dc.date.issued2004
dc.description.abstractThis paper discusses how to specify an observable high-frequency model for a vector of time series sampled at high and low frequencies. To this end we first study how aggregation over time affects both, the dynamic components of a time series and their observability, in a multivariate linear framework. We find that the basic dynamic components remain unchanged but some of them, mainly those related to the seasonal structure, become unobservable. Building on these results, we propose a structured specification method built on the idea that the models relating the variables in high and low sampling frequencies should be mutually consistent. After specifying a consistent and observable high-frequency model, standard state-space techniques provide an adequate framework for estimation, diagnostic checking, data interpolation and forecasting. Our method has three main uses. First, it is useful to disaggregate a vector of low-frequency time series into high-frequency estimates coherent with both, the sample information and its statistical properties. Second, it may improve forecasting of the low-frequency variables, as the forecasts conditional to high-frequency indicators have in general smaller error variances than those derived from the corresponding low-frequency values. Third, the resulting forecasts can be updated as new high-frequency values become available, thus providing an effective tool to assess the effect of new information over medium term expectations. An example using national accounting data illustrates the practical application of this method.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/6472
dc.identifier.officialurlhttp://www.ucm.es/info/ecocuan/mjm/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/52653
dc.language.isospa
dc.rights.accessRightsopen access
dc.subject.keywordState-space models
dc.subject.keywordKalman filter
dc.subject.keywordtemporal disaggregation
dc.subject.keywordobservability
dc.subject.keywordseasonality
dc.subject.ucmEstadística matemática (Estadística)
dc.subject.ucmEconometría (Estadística)
dc.subject.unesco1209 Estadística
dc.subject.unesco5302.04 Estadística Económica
dc.titleModelling and forecasting time series sampled at different frequencies
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationfdb804b2-ac97-4a0a-bd74-9414c4b86042
relation.isAuthorOfPublication138478db-3f49-41e4-a76e-ff6d03e56bb8
relation.isAuthorOfPublication.latestForDiscoveryfdb804b2-ac97-4a0a-bd74-9414c4b86042

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Interpol-JF.pdf
Size:
466.04 KB
Format:
Adobe Portable Document Format

Collections