Bioelectrical State of Bacteria Is Linked to Growth Dynamics and Response to Neurotransmitters: Perspectives for the Investigation of the Microbiota–Brain Axis
dc.contributor.author | Muñoz Rodríguez, David | |
dc.contributor.author | Bourqqia Ramzi, Marwane | |
dc.contributor.author | García Esteban, María Teresa | |
dc.contributor.author | Murciano Cespedosa, Antonio | |
dc.contributor.author | Vián Herrero, Alejandro | |
dc.contributor.author | Lombardo Hernández, Juan | |
dc.contributor.author | García Pérez, Pablo | |
dc.contributor.author | Conejero Meca, Francisco | |
dc.contributor.author | Mateos González, Álvaro | |
dc.contributor.author | Geuna, Stefano | |
dc.contributor.author | Herrera Rincón, Celia | |
dc.date.accessioned | 2024-02-02T14:47:25Z | |
dc.date.available | 2024-02-02T14:47:25Z | |
dc.date.issued | 2023 | |
dc.description | Funding This research was funded by the Ramon y Cajal program through the Spanish Ministry of Science, Research Agency to C. H-R. (RYC2020-029499-I). This research was funded in part by Templeton World Charity Foundation to C. H-R. (TWCF0241 and TWCF0503). For open access, the author has applied a CC-BY public copyright license to any author-accepted manuscript version arising from this submission. | |
dc.description.abstract | Inter-cellular communication is mediated by a sum of biochemical, biophysical, and bioelectrical signals. This might occur not only between cells belonging to the same tissue and/or animal species but also between cells that are, from an evolutionary point of view, far away. The possibility that bioelectrical communication takes place between bacteria and nerve cells has opened exciting perspectives in the study of the gut microbiota–brain axis. The aim of this paper is (i) to establish a reliable method for the assessment of the bioelectrical state of two bacterial strains: Bacillus subtilis (B. subtilis) and Limosilactobacillus reuteri (L. reuteri); (ii) to monitor the bacterial bioelectrical profile throughout its growth dynamics; and (iii) to evaluate the effects of two neurotransmitters (glutamate and γ-aminobutyric acid-GABA) on the bioelectrical signature of bacteria. Our results show that membrane potential (Vmem) and the proliferative capacity of the population are functionally linked in B. subtilis in each phase of the cell cycle. Remarkably, we demonstrate that bacteria respond to neural signals by changing Vmem properties. Finally, we show that Vmem changes in response to neural stimuli are present also in a microbiota-related strain L. reuteri. Our proof-of-principle data reveal a new methodological approach for the better understanding of the relation between bacteria and the brain, with a special focus on gut microbiota. Likewise, this approach will open exciting perspectives in the study of the inter-cellular mechanisms which regulate the bi-directional communication between bacteria and neurons and, ultimately, for designing gut microbiota–brain axis-targeted treatments for neuropsychiatric diseases. | |
dc.description.department | Depto. de Biodiversidad, Ecología y Evolución | |
dc.description.faculty | Fac. de Ciencias Biológicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Templeton World Charity Foundation | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.status | pub | |
dc.identifier.citation | Muñoz-Rodríguez, D.; Bourqqia-Ramzi, M.; García-Esteban, M.T.; Murciano-Cespedosa, A.; Vian, A.; Lombardo-Hernández, J.; García-Pérez, P.; Conejero, F.; Mateos González, Á.; Geuna, S.; et al. Bioelectrical State of Bacteria Is Linked to Growth Dynamics and Response to Neurotransmitters: Perspectives for the Investigation of the Microbiota–Brain Axis. Int. J. Mol. Sci. 2023, 24, 13394. https://doi.org/10.3390/ijms241713394 | |
dc.identifier.doi | 10.3390/ijms241713394 | |
dc.identifier.essn | 1422-0067 | |
dc.identifier.issn | 1661-6596 | |
dc.identifier.officialurl | https://doi.org/10.3390/ijms241713394 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/98368 | |
dc.issue.number | 17 | |
dc.journal.title | International Journal of Molecular Sciences | |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.cdu | 612.8 | |
dc.subject.keyword | Bioelectricity | |
dc.subject.keyword | Gut microbiota–brain axis | |
dc.subject.keyword | Bis-(1,3-dibutylbarbituric acid) trimethine oxonol-DiBAC | |
dc.subject.keyword | Depolarization | |
dc.subject.ucm | Neurociencias (Biológicas) | |
dc.subject.unesco | 2406.02 Bioelectricidad | |
dc.title | Bioelectrical State of Bacteria Is Linked to Growth Dynamics and Response to Neurotransmitters: Perspectives for the Investigation of the Microbiota–Brain Axis | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 24 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | bda3e5ed-dc29-4a85-95f4-444b6119db30 | |
relation.isAuthorOfPublication | a08bc152-a727-4918-8e7e-1fab4ad77e8f | |
relation.isAuthorOfPublication | bda92ba1-e604-4d2a-9eae-c5dc0d6c6d57 | |
relation.isAuthorOfPublication.latestForDiscovery | bda3e5ed-dc29-4a85-95f4-444b6119db30 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Bioelectrical_State_of_Bacteria.pdf
- Size:
- 1.9 MB
- Format:
- Adobe Portable Document Format