Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Digital Image Tamper Detection Technique Based on Spectrum Analysis of CFA Artifacts

dc.contributor.authorGonzález Fernández, Edgar
dc.contributor.authorSandoval Orozco, Ana Lucila
dc.contributor.authorGarcía Villalba, Luis Javier
dc.contributor.authorHernandez-Castro, Julio
dc.date.accessioned2023-06-17T12:38:45Z
dc.date.available2023-06-17T12:38:45Z
dc.date.issued2018-08-25
dc.description.abstractExistence of mobile devices with high performance cameras and powerful image processing applications eases the alteration of digital images for malicious purposes. This work presents a new approach to detect digital image tamper detection technique based on CFA artifacts arising from the differences in the distribution of acquired and interpolated pixels. The experimental evidence supports the capabilities of the proposed method for detecting a broad range of manipulations, e.g., copy-move, resizing, rotation, filtering and colorization. This technique exhibits tampered areas by computing the probability of each pixel of being interpolated and then applying the DCT on small blocks of the probability map. The value of the coefficient for the highest frequency on each block is used to decide whether the analyzed region has been tampered or not. The results shown here were obtained from tests made on a publicly available dataset of tampered images for forensic analysis. Affected zones are clearly highlighted if the method detects CFA inconsistencies. The analysis can be considered successful if the modified zone, or an important part of it, is accurately detected. By analizing a publicly available dataset with images modified with different methods we reach an 86% of accuracy, which provides a good result for a method that does not require previous training.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67667
dc.identifier.doi10.3390/s18092804
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s18092804
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/18/9/2804
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12692
dc.issue.number9
dc.journal.titleSensors
dc.language.isoeng
dc.page.initial2804
dc.publisherMDPI
dc.relation.projectIDRAMSES (700326)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordBayer Filter
dc.subject.keywordCFA artifacts
dc.subject.keywordColor Filter Array
dc.subject.keywordDiscrete Cosine Transform
dc.subject.keywordImage Forensics
dc.subject.keywordimage tamper detection
dc.subject.ucmInformática (Informática)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.17 Informática
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleDigital Image Tamper Detection Technique Based on Spectrum Analysis of CFA Artifacts
dc.typejournal article
dc.volume.number18
dspace.entity.typePublication
relation.isAuthorOfPublicationdea44425-99a5-4fef-b005-52d0713d0e0d
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscoverydea44425-99a5-4fef-b005-52d0713d0e0d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Digital_Image_Tamper_Detection_Technique_Based_on_.pdf
Size:
3.91 MB
Format:
Adobe Portable Document Format

Collections