Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optimization of in situ plasma oxidation of metallic gadolinium thin films deposited by high pressure sputtering on silicon

dc.contributor.authorLucía Mulas, María Luisa
dc.contributor.authorPampillón Arce, María Ángela
dc.contributor.authorSan Andrés Serrano, Enrique
dc.contributor.authorFeijoo Guerrero, Pedro Carlos
dc.date.accessioned2023-06-19T13:26:21Z
dc.date.available2023-06-19T13:26:21Z
dc.date.issued2013-01
dc.description© American Vacuum Society. The authors would like to acknowledge C.A.I. de Técnicas Físicas and C.A.I. de Espectroscopía y Espectrometría of the Universidad Complutense de Madrid. This work was funded by the Spanish Ministerio de Economía y Competividad through the project TEC2010-18051. Works of M.A. Pampillón and P.C. Feijoo were funded by the FPI program and FPU Grant No. AP2007-01157, respectively.
dc.description.abstractGadolinium oxide thin films were deposited on silicon by a two-step process: high pressure sputtering from a metallic gadolinium target followed by an in situ plasma oxidation. Several plasma conditions for metal deposition and oxidation were studied in order to minimize the growth of a SiOx layer at the interface between the high permittivity dielectric and the silicon substrate and to avoid substrate damage. Plasma emission was studied with glow discharge optical spectroscopy. The films were structurally characterized by Fourier transform infrared spectroscopy. Metal-insulator-semiconductor capacitors were fabricated with two different top metals (titanium and platinum) to analyze the influence of deposition conditions and the metal choice. Pt gated devices showed an interfacial SiOx regrowth after a forming gas annealing, while Ti gates scavenge the interface layer.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministerio de Economía y Competividad
dc.description.sponsorshipFPI program
dc.description.sponsorshipFPU program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27287
dc.identifier.doi10.1116/1.4769893
dc.identifier.issn1071-1023
dc.identifier.officialurlhttp://dx.doi.org/10.1116/1.4769893
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33694
dc.issue.number1
dc.journal.titleJournal of Vacuum Science & Technology B
dc.language.isoeng
dc.publisherAVS Amer Inst. Physics
dc.relation.projectIDTEC2010-18051
dc.relation.projectIDAP2007-01157
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordField-effect transistors
dc.subject.keywordThermal-stability
dc.subject.keywordOxide
dc.subject.keywordScandate
dc.subject.keywordDielectrics
dc.subject.keywordTechnology
dc.subject.keywordInterfaces
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleOptimization of in situ plasma oxidation of metallic gadolinium thin films deposited by high pressure sputtering on silicon
dc.typejournal article
dc.volume.number31
dcterms.references1) C. Auth et al., Intel Technol. J., 12, 77 (2008). 2) G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys., 89, 5243 (2001). 3) J. Robertson, Rep. Prog. Phys., 69, 327 (2006). 4) C. Zhao et al., Appl. Phys. Lett., 86, 132903 (2005). 5) J.M.J. Lopes et al., Microelectron. Eng., 86, 1646 (2009). 6) M. Wagner, T. Heeg, J. Schubert, St. Lenk, S. Mantl, C. Zhao, M. Caymax, and S. De Gendt, Appl. Phys. Lett., 88, 172901 (2006). 7) M. Roeckerath, J.M.J. Lopes, E. Durgun Özben, C. Sandow, S. Lenk, T. Heeg, J. Schubert, and S. Mantl, Appl. Phys. A: Mater. Sci. Process., 94, 521 (2009). 8) K. Fröhlich, J. Fedor, I. Kostic, J. Manka, and P. Ballo, J. Electr. Eng., 62, 54 (2011). 9) R.D. Shannon, J. Appl. Phys., 73, 348 (1993). 10) J.A. Kittl et al., Microelectron. Eng., 86, 1789 (2009). 11) S.-G. Lim et al., J. Appl. Phys., 91, 4500 (2002). 12) V. V. Afanasév, A. Stesmans, C. Zhao, M. Caymax, T. Heeg, J. Schubert, Y. Jia, D. G. Schlom, and G. Lucovsky, Appl. Phys. Lett., 85, 5917 (2004). 13) B.S. Lim, A. Rahtu, and R.G. Gordon, Nature Mater., 2, 749 (2003). 14) G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, and L.D. Zhang, Surf. Sci., 576, 67 (2005). 15) E. San Andrés, M. Toledano-Luque, Á. del Prado, M.A. Navacerrada, I. Mártil, G. González-Díaz, W. Bohne, J.R Öhrich, and E. Strub, J. Vac. Sci. Technol. A, 23, 1523 (2005). 16) Y. Hoshino, Y. Kido, K. Yamamoto, S. Hayashi, and M. Niwa, Appl. Phys. Lett., 81, 2650 (2002). 17) H. Kim, P.C. McIntyre, C.O. Chui, K.C. Saraswat, and S. Stemmer, J. Appl. Phys., 96, 3467 (2004). 18) W. Kern and D. Puotinen, RCA Rev., 31, 187 (1970). 19) E.H. Nicollian and A. Goetzberger, At&T Tech. J., 46, 1055 (1967). 20) J.R. Hauser, CVC version 5.0, © 2000 NCSU Software, Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 2000. 21) W.F. Meggers, C.H. Corliss, and B.F. Scribner, Natl. Bur. Stand. Monograph, 145, 600 (1975). 22) G. Norlèn, Phys. Scr., 8, 249 (1973). 23) M. Toledano-Luque et al., J. Appl. Phys., 102, 044106 (2007). 24) M. Toledano-Luque, M.L. Lucía, Á. del Prado, E. San Andrés, I. Mártil, and G. González-Díaz, Appl. Phys. Lett., 91, 191502 (2007). 25) M.A. Pampillón, P.C. Feijoo, E. San Andrés, M. Toledano-Luque, Á. del Prado, A.J. Blázquez, and M.L. Lucía, Microelectron. Eng., 88, 1357 (2011). 26) P.G. Pai, S.S. Chao, V. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A, 4, 689 (1986). 27) R.A.B. Devine, Appl. Phys. Lett., 68, 3108 (1996). 28) A.C. Diebold, D. Venables, Y. Chabal, D. Muller, M. Weldon, and E. Garfunkel, Mater. Sci. Semicond. Process., 2, 103 (1999). 29) E. Monroy et al., Semicond. Sci. Technol., 17, L47 (2002). 30) Y. Morita, S. Migita, W. Mizubayashi, and H. Ota, Jpn. J. Appl. Phys., Part 1, 50, 10PG01 (2011). 31) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, D. Bravo, and F.J. López, J. Appl. Phys., 92, 1906 (2002).
dspace.entity.typePublication
relation.isAuthorOfPublication83f99fc6-abdc-4870-9040-a54cfb6fd5bf
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscovery83f99fc6-abdc-4870-9040-a54cfb6fd5bf

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lucia,ML01libre.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format

Collections