A novel quasi-exactly solvable spin chain with nearest-neighbors interactions
dc.contributor.author | Enciso, Alberto | |
dc.contributor.author | Finkel Morgenstern, Federico | |
dc.contributor.author | González López, Artemio | |
dc.contributor.author | Rodríguez González, Miguel Ángel | |
dc.date.accessioned | 2023-06-20T10:56:09Z | |
dc.date.available | 2023-06-20T10:56:09Z | |
dc.date.issued | 2008-02-01 | |
dc.description | ©2007 Elsevier B.V. All rights reserved. This work was partially supported by the DGI under grant no. FIS2005-00752, and by the Complutense University and the DGUI under grant No. GR69/06-910556. A.E. acknowledges the financial support of the Spanish Ministry of Education and Science through an FPU scholarship. The authors would also like to thank V. Martín-Mayor for useful discussions on the moments method. | |
dc.description.abstract | In this paper we study a novel spin chain with nearest-neighbors interactions depending on the sites coordinates, which in some sense is intermediate between the Heisenberg chain and the spin chains of Haldane-Shastry type. We show that when the number of spins is sufficiently large both the density of sites and the strength of the interaction between consecutive spins follow the Gaussian law. We develop an extension of the standard freezing trick argument that enables us to exactly compute a certain number of eigenvalues and their corresponding eigenfunctions. The eigenvalues thus computed are all integers, and in fact our numerical studies evidence that these are the only integer eigenvalues of the chain under consideration. This fact suggests that this chain can be regarded as a finite-dimensional analog of the class of quasi-exactly solvable Schrodinger operators, which has been extensively studied in the last two decades. We have applied the method of moments to study some statistical properties of the chain's spectrum, showing in particular that the density of eigenvalues follows a Wigner-like law. Finally, we emphasize that, unlike the original freezing trick, the extension thereof developed in this paper can be applied to spin chains whose associated dynamical spin model is only quasi-exactly solvable. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGI | |
dc.description.sponsorship | Complutense University | |
dc.description.sponsorship | DGUI | |
dc.description.sponsorship | Spanish Ministry of Education and Science | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31134 | |
dc.identifier.doi | 10.1016/j.nuclphysb.2007.07.001 | |
dc.identifier.issn | 0550-3213 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.nuclphysb.2007.07.001 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51477 | |
dc.issue.number | 3 | |
dc.journal.title | Nuclear physics B | |
dc.language.iso | eng | |
dc.page.final | 482 | |
dc.page.initial | 452 | |
dc.publisher | Elsevier | |
dc.relation.projectID | FIS2005-00752 | |
dc.relation.projectID | GR69/06-910556 | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Spin chains | |
dc.subject.keyword | Quasi-exact solvability | |
dc.subject.keyword | Calogero–Sutherland models | |
dc.subject.keyword | Freezing trick | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | A novel quasi-exactly solvable spin chain with nearest-neighbors interactions | |
dc.type | journal article | |
dc.volume.number | 789 | |
dcterms.references | [1] J.A. Minahan, K. Zarembo, JHEP 0303 (2003) 013. [2] D. Berenstein, S.A. Cherkis, Nucl. Phys. B 702 (2004) 49. [3] R. Roiban, A. Volovich, JHEP 0409 (2004) 032. [4] N. Beisert, M. Staudacher, Nucl. Phys. B 727 (2005) 1. [5] L. Freyhult, C. Kristjansen, T. Månsson, JHEP 0512 (2005) 008. [6] A.S. Gorsky, Theor. Math. Phys. 142 (2005) 153. [7] W. Heisenberg, Z. Phys. 49 (1928) 619. [8] H. Bethe, Z. Phys. 71 (1931) 205. [9] L. Hulthén, Ark. Mat. Astron. Fys. 26A (1938) 1. [10] J. des Cloizeaux, J.J. Pearson, Phys. Rev. 128 (1962) 2131. [11] H.M. Babujian, Phys. Lett. A 90 (1982) 479. [12] L.A. Takhtajan, Phys. Lett. A 87 (1982) 479. [13] C.K. Majumdar, D.K. Ghosh, J. Math. Phys. 10 (1969) 1388. [14] I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Phys. Rev. Lett. 59 (1987) 799. [15] F.D.M. Haldane, Phys. Rev. Lett. 60 (1988) 635. [16] B.S. Shastry, Phys. Rev. Lett. 60 (1988) 639. [17] J. Hubbard, Proc. R. Soc. London, Ser. A 276 (1963) 238. [18] M.C. Gutzwiller, Phys. Rev. Lett. 10 (1963) 159. [19] F. Gebhard, D. Vollhardt, Phys. Rev. Lett. 59 (1987) 1472. [20] B. Sutherland, Phys. Rev. A 4 (1971) 2019. [21] B. Sutherland, Phys. Rev. A 5 (1972) 1372. [22] Z.N.C. Ha, F.D.M. Haldane, Phys. Rev. B 46 (1992) 9359. [23] K. Hikami, M. Wadati, J. Phys. Soc. Jpn. 62 (1993) 469. [24] J.A. Minahan, A.P. Polychronakos, Phys. Lett. B 302 (1993) 265. [25] A.P. Polychronakos, Phys. Rev. Lett. 70 (1993) 2329. [26] F. Calogero, J. Math. Phys. 12 (1971) 419. [27] F. Calogero, Lett. Nuovo Cimento 20 (1977) 251. [28] H. Frahm, J. Phys. A: Math. Gen. 26 (1993) L473. [29] A.P. Polychronakos, Nucl. Phys. B 419 (1994) 553. [30] F. Finkel, A. González-López, Phys. Rev. B 72 (2005) 174411. [31] D. Bernard, M. Gaudin, F.D.M. Haldane, V. Pasquier, J. Phys. A: Math. Gen. 26 (1993) 5219. [32] A. Enciso, F. Finkel, A. González-López, M.A. Rodríguez, Nucl. Phys. B 707 (2005) 553. [33] B. Basu-Mallick, N. Bondyopadhaya, Nucl. Phys. B 757 (2006) 280. [34] A. Enciso, F. Finkel, A. González-López, M.A. Rodríguez, Phys. Lett. B 605 (2005) 214. [35] A. Enciso, F. Finkel, A. González-López, M.A. Rodríguez, J. Phys. A: Math. Theor. 40 (2007) 1857. [36] A.V. Turbiner, Commun. Math. Phys. 118 (1988) 467. [37] M.A. Shifman, Int. J. Mod. Phys. A 4 (1989) 2897. [38] A.G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics, Institute of Physics Publishing, Bristol, 1994. [39] G. Auberson, S.R. Jain, A. Khare, J. Phys. A: Math. Gen. 34 (2001) 695. [40] C. Benoit, E. Royer, G. Poussigue, J. Phys.: Condens. Matter 4 (1992) 3125. [41] J.L. Alonso, L.A. Fernández, F. Guinea, V. Laliena, V. Martín-Mayor, Phys. Rev. B 63 (2001) 054411. [42] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, sixth ed., Academic Press, San Diego, 2000. [43] J.M. Blair, C.A. Edwards, J.H. Johnson, Math. Comp. 30 (1976) 827. [44] F. Calogero, A.M. Perelomov, Lett. Nuovo Cimento 23 (1978) 650. [45] D. Dominici, math.CA/0601078. [46] B. Simon, Ann. Inst. H. Poincaré, Sect. A (N.S.) 38 (1983) 295. [47] D. Holcman, I. Kupka, Forum Math. 18 (2006) 445. [48] A. Khare, I. Loris, R. Sasaki, J. Phys. A: Math. Gen. 37 (2004) 1665. [49] F. Finkel, D. Gómez-Ullate, A. González-López, M.A. Rodríguez, R. Zhdanov, Commun. Math. Phys. 221 (2001) 477. [50] F. Finkel, D. Gómez-Ullate, A. González-López, M.A. Rodríguez, R. Zhdanov, Nucl. Phys. B 613 (2001) 472. [51] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. [52] P. Turchi, F. Ducastelle, G. Tréglia, J. Phys. C: Solid State Phys. 15 (1982) 2891. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 207092a4-0443-4336-a037-15936f8acc25 | |
relation.isAuthorOfPublication | 7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc | |
relation.isAuthorOfPublication | d781a665-7ef6-44e0-a0da-81f722f1b8ad | |
relation.isAuthorOfPublication.latestForDiscovery | 207092a4-0443-4336-a037-15936f8acc25 |
Download
Original bundle
1 - 1 of 1