Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A novel quasi-exactly solvable spin chain with nearest-neighbors interactions

dc.contributor.authorEnciso, Alberto
dc.contributor.authorFinkel Morgenstern, Federico
dc.contributor.authorGonzález López, Artemio
dc.contributor.authorRodríguez González, Miguel Ángel
dc.date.accessioned2023-06-20T10:56:09Z
dc.date.available2023-06-20T10:56:09Z
dc.date.issued2008-02-01
dc.description©2007 Elsevier B.V. All rights reserved. This work was partially supported by the DGI under grant no. FIS2005-00752, and by the Complutense University and the DGUI under grant No. GR69/06-910556. A.E. acknowledges the financial support of the Spanish Ministry of Education and Science through an FPU scholarship. The authors would also like to thank V. Martín-Mayor for useful discussions on the moments method.
dc.description.abstractIn this paper we study a novel spin chain with nearest-neighbors interactions depending on the sites coordinates, which in some sense is intermediate between the Heisenberg chain and the spin chains of Haldane-Shastry type. We show that when the number of spins is sufficiently large both the density of sites and the strength of the interaction between consecutive spins follow the Gaussian law. We develop an extension of the standard freezing trick argument that enables us to exactly compute a certain number of eigenvalues and their corresponding eigenfunctions. The eigenvalues thus computed are all integers, and in fact our numerical studies evidence that these are the only integer eigenvalues of the chain under consideration. This fact suggests that this chain can be regarded as a finite-dimensional analog of the class of quasi-exactly solvable Schrodinger operators, which has been extensively studied in the last two decades. We have applied the method of moments to study some statistical properties of the chain's spectrum, showing in particular that the density of eigenvalues follows a Wigner-like law. Finally, we emphasize that, unlike the original freezing trick, the extension thereof developed in this paper can be applied to spin chains whose associated dynamical spin model is only quasi-exactly solvable.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGI
dc.description.sponsorshipComplutense University
dc.description.sponsorshipDGUI
dc.description.sponsorshipSpanish Ministry of Education and Science
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31134
dc.identifier.doi10.1016/j.nuclphysb.2007.07.001
dc.identifier.issn0550-3213
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.nuclphysb.2007.07.001
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51477
dc.issue.number3
dc.journal.titleNuclear physics B
dc.language.isoeng
dc.page.final482
dc.page.initial452
dc.publisherElsevier
dc.relation.projectIDFIS2005-00752
dc.relation.projectIDGR69/06-910556
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51-73
dc.subject.keywordSpin chains
dc.subject.keywordQuasi-exact solvability
dc.subject.keywordCalogero–Sutherland models
dc.subject.keywordFreezing trick
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleA novel quasi-exactly solvable spin chain with nearest-neighbors interactions
dc.typejournal article
dc.volume.number789
dcterms.references[1] J.A. Minahan, K. Zarembo, JHEP 0303 (2003) 013. [2] D. Berenstein, S.A. Cherkis, Nucl. Phys. B 702 (2004) 49. [3] R. Roiban, A. Volovich, JHEP 0409 (2004) 032. [4] N. Beisert, M. Staudacher, Nucl. Phys. B 727 (2005) 1. [5] L. Freyhult, C. Kristjansen, T. Månsson, JHEP 0512 (2005) 008. [6] A.S. Gorsky, Theor. Math. Phys. 142 (2005) 153. [7] W. Heisenberg, Z. Phys. 49 (1928) 619. [8] H. Bethe, Z. Phys. 71 (1931) 205. [9] L. Hulthén, Ark. Mat. Astron. Fys. 26A (1938) 1. [10] J. des Cloizeaux, J.J. Pearson, Phys. Rev. 128 (1962) 2131. [11] H.M. Babujian, Phys. Lett. A 90 (1982) 479. [12] L.A. Takhtajan, Phys. Lett. A 87 (1982) 479. [13] C.K. Majumdar, D.K. Ghosh, J. Math. Phys. 10 (1969) 1388. [14] I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Phys. Rev. Lett. 59 (1987) 799. [15] F.D.M. Haldane, Phys. Rev. Lett. 60 (1988) 635. [16] B.S. Shastry, Phys. Rev. Lett. 60 (1988) 639. [17] J. Hubbard, Proc. R. Soc. London, Ser. A 276 (1963) 238. [18] M.C. Gutzwiller, Phys. Rev. Lett. 10 (1963) 159. [19] F. Gebhard, D. Vollhardt, Phys. Rev. Lett. 59 (1987) 1472. [20] B. Sutherland, Phys. Rev. A 4 (1971) 2019. [21] B. Sutherland, Phys. Rev. A 5 (1972) 1372. [22] Z.N.C. Ha, F.D.M. Haldane, Phys. Rev. B 46 (1992) 9359. [23] K. Hikami, M. Wadati, J. Phys. Soc. Jpn. 62 (1993) 469. [24] J.A. Minahan, A.P. Polychronakos, Phys. Lett. B 302 (1993) 265. [25] A.P. Polychronakos, Phys. Rev. Lett. 70 (1993) 2329. [26] F. Calogero, J. Math. Phys. 12 (1971) 419. [27] F. Calogero, Lett. Nuovo Cimento 20 (1977) 251. [28] H. Frahm, J. Phys. A: Math. Gen. 26 (1993) L473. [29] A.P. Polychronakos, Nucl. Phys. B 419 (1994) 553. [30] F. Finkel, A. González-López, Phys. Rev. B 72 (2005) 174411. [31] D. Bernard, M. Gaudin, F.D.M. Haldane, V. Pasquier, J. Phys. A: Math. Gen. 26 (1993) 5219. [32] A. Enciso, F. Finkel, A. González-López, M.A. Rodríguez, Nucl. Phys. B 707 (2005) 553. [33] B. Basu-Mallick, N. Bondyopadhaya, Nucl. Phys. B 757 (2006) 280. [34] A. Enciso, F. Finkel, A. González-López, M.A. Rodríguez, Phys. Lett. B 605 (2005) 214. [35] A. Enciso, F. Finkel, A. González-López, M.A. Rodríguez, J. Phys. A: Math. Theor. 40 (2007) 1857. [36] A.V. Turbiner, Commun. Math. Phys. 118 (1988) 467. [37] M.A. Shifman, Int. J. Mod. Phys. A 4 (1989) 2897. [38] A.G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics, Institute of Physics Publishing, Bristol, 1994. [39] G. Auberson, S.R. Jain, A. Khare, J. Phys. A: Math. Gen. 34 (2001) 695. [40] C. Benoit, E. Royer, G. Poussigue, J. Phys.: Condens. Matter 4 (1992) 3125. [41] J.L. Alonso, L.A. Fernández, F. Guinea, V. Laliena, V. Martín-Mayor, Phys. Rev. B 63 (2001) 054411. [42] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, sixth ed., Academic Press, San Diego, 2000. [43] J.M. Blair, C.A. Edwards, J.H. Johnson, Math. Comp. 30 (1976) 827. [44] F. Calogero, A.M. Perelomov, Lett. Nuovo Cimento 23 (1978) 650. [45] D. Dominici, math.CA/0601078. [46] B. Simon, Ann. Inst. H. Poincaré, Sect. A (N.S.) 38 (1983) 295. [47] D. Holcman, I. Kupka, Forum Math. 18 (2006) 445. [48] A. Khare, I. Loris, R. Sasaki, J. Phys. A: Math. Gen. 37 (2004) 1665. [49] F. Finkel, D. Gómez-Ullate, A. González-López, M.A. Rodríguez, R. Zhdanov, Commun. Math. Phys. 221 (2001) 477. [50] F. Finkel, D. Gómez-Ullate, A. González-López, M.A. Rodríguez, R. Zhdanov, Nucl. Phys. B 613 (2001) 472. [51] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. [52] P. Turchi, F. Ducastelle, G. Tréglia, J. Phys. C: Solid State Phys. 15 (1982) 2891.
dspace.entity.typePublication
relation.isAuthorOfPublication207092a4-0443-4336-a037-15936f8acc25
relation.isAuthorOfPublication7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc
relation.isAuthorOfPublicationd781a665-7ef6-44e0-a0da-81f722f1b8ad
relation.isAuthorOfPublication.latestForDiscovery207092a4-0443-4336-a037-15936f8acc25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Finkel12.pdf
Size:
489.9 KB
Format:
Adobe Portable Document Format

Collections