Planar cracks running along piecewise linear paths
dc.contributor.author | Herrero García, Miguel Ángel | |
dc.contributor.author | Oleaga Apadula, Gerardo Enrique | |
dc.contributor.author | Velázquez, J. J. L. | |
dc.date.accessioned | 2023-06-20T09:38:48Z | |
dc.date.available | 2023-06-20T09:38:48Z | |
dc.date.issued | 2004 | |
dc.description.abstract | Consider a crack propagating in a plane according to a loading that results in anti-plane shear deformation. We show here that if the crack path consists of two straight segments making an angle psi not equal 0 at their junction, examples can be provided for which the value of the stress-intensity factor (SIF) actually depends on the previous history of the motion. This is in sharp contrast with the rectilinear case (corresponding to psi = 0), where the SIF is known to have a local character, its value depending only on the position and velocity of the crack tip at any given time. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16409 | |
dc.identifier.citation | Herrero García, M. A., Oleaga Apadula, G. E., Velázquez, J. J. L. «Planar Cracks Running along Piecewise Linear Paths». Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 460, n.o 2042, febrero de 2004, pp. 581-601. DOI.org (Crossref), https://doi.org/10.1098/rspa.2003.1173. | |
dc.identifier.doi | 10.1098/rspa.2003.1173 | |
dc.identifier.issn | 1364-5021 | |
dc.identifier.officialurl | https//doi.org/10.1098/rspa.2003.1173 | |
dc.identifier.relatedurl | http://rspa.royalsocietypublishing.org/content/460/2042/581.full.pdf+html | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50104 | |
dc.issue.number | 2042 | |
dc.journal.title | Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences | |
dc.language.iso | eng | |
dc.page.final | 601 | |
dc.page.initial | 581 | |
dc.page.total | 21 | |
dc.publisher | Royal Society of London | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 539.42 | |
dc.subject.cdu | 620.17 | |
dc.subject.cdu | 537.87 | |
dc.subject.cdu | 539.3 | |
dc.subject.keyword | Fracture dynamics | |
dc.subject.keyword | Wave propagation | |
dc.subject.keyword | Linear elasticity | |
dc.subject.keyword | Asymptotic behaviour of solutions | |
dc.subject.keyword | Stress intensity factors | |
dc.subject.keyword | Situations | |
dc.subject.keyword | Expansion | |
dc.subject.keyword | Form | |
dc.subject.ucm | Física matemática | |
dc.subject.ucm | Física de materiales | |
dc.title | Planar cracks running along piecewise linear paths | |
dc.type | journal article | |
dc.volume.number | 460 | |
dcterms.references | Amestoy, M. & Leblond, J. B. 1992 Crack paths in plane situations. II. Detailed form of the expansion of the stress intensity factors. Int. J. Solids Struct. 29, 465–501. Anderson, T. L. 1994 Fracture mechanics. Boca Raton, FL: CRC Press. Eshelby, J. D. 1969 The elastic field of a crack extending nonuniformly under general antiplane loading. J. Mech. Phys. Solids 17, 177–199. Freund, L. B. 1998 Dynamic fracture mechanics. Cambridge University Press. Kostrov, B. V. 1975 On the crack propagation with variable velocity. Int. J. Fract. 11, 47–56. Leblond, J. B. 1989 Crack paths in plane situations. I. General form of the expansion of the stress intensity factors. Int. J. Solids Struct. 25, 1311–1325. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ba1405fa-f03c-43c4-93f0-1bf3c1f6e836 | |
relation.isAuthorOfPublication | 8a7b6bff-4e63-42ed-bb95-31a089c7d57f | |
relation.isAuthorOfPublication.latestForDiscovery | 8a7b6bff-4e63-42ed-bb95-31a089c7d57f |
Download
Original bundle
1 - 1 of 1