Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Planar cracks running along piecewise linear paths

dc.contributor.authorHerrero García, Miguel Ángel
dc.contributor.authorOleaga Apadula, Gerardo Enrique
dc.contributor.authorVelázquez, J. J. L.
dc.date.accessioned2023-06-20T09:38:48Z
dc.date.available2023-06-20T09:38:48Z
dc.date.issued2004
dc.description.abstractConsider a crack propagating in a plane according to a loading that results in anti-plane shear deformation. We show here that if the crack path consists of two straight segments making an angle psi not equal 0 at their junction, examples can be provided for which the value of the stress-intensity factor (SIF) actually depends on the previous history of the motion. This is in sharp contrast with the rectilinear case (corresponding to psi = 0), where the SIF is known to have a local character, its value depending only on the position and velocity of the crack tip at any given time.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16409
dc.identifier.citationHerrero García, M. A., Oleaga Apadula, G. E., Velázquez, J. J. L. «Planar Cracks Running along Piecewise Linear Paths». Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 460, n.o 2042, febrero de 2004, pp. 581-601. DOI.org (Crossref), https://doi.org/10.1098/rspa.2003.1173.
dc.identifier.doi10.1098/rspa.2003.1173
dc.identifier.issn1364-5021
dc.identifier.officialurlhttps//doi.org/10.1098/rspa.2003.1173
dc.identifier.relatedurlhttp://rspa.royalsocietypublishing.org/content/460/2042/581.full.pdf+html
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50104
dc.issue.number2042
dc.journal.titleProceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences
dc.language.isoeng
dc.page.final601
dc.page.initial581
dc.page.total21
dc.publisherRoyal Society of London
dc.rights.accessRightsrestricted access
dc.subject.cdu539.42
dc.subject.cdu620.17
dc.subject.cdu537.87
dc.subject.cdu539.3
dc.subject.keywordFracture dynamics
dc.subject.keywordWave propagation
dc.subject.keywordLinear elasticity
dc.subject.keywordAsymptotic behaviour of solutions
dc.subject.keywordStress intensity factors
dc.subject.keywordSituations
dc.subject.keywordExpansion
dc.subject.keywordForm
dc.subject.ucmFísica matemática
dc.subject.ucmFísica de materiales
dc.titlePlanar cracks running along piecewise linear paths
dc.typejournal article
dc.volume.number460
dcterms.referencesAmestoy, M. & Leblond, J. B. 1992 Crack paths in plane situations. II. Detailed form of the expansion of the stress intensity factors. Int. J. Solids Struct. 29, 465–501. Anderson, T. L. 1994 Fracture mechanics. Boca Raton, FL: CRC Press. Eshelby, J. D. 1969 The elastic field of a crack extending nonuniformly under general antiplane loading. J. Mech. Phys. Solids 17, 177–199. Freund, L. B. 1998 Dynamic fracture mechanics. Cambridge University Press. Kostrov, B. V. 1975 On the crack propagation with variable velocity. Int. J. Fract. 11, 47–56. Leblond, J. B. 1989 Crack paths in plane situations. I. General form of the expansion of the stress intensity factors. Int. J. Solids Struct. 25, 1311–1325.
dspace.entity.typePublication
relation.isAuthorOfPublicationba1405fa-f03c-43c4-93f0-1bf3c1f6e836
relation.isAuthorOfPublication8a7b6bff-4e63-42ed-bb95-31a089c7d57f
relation.isAuthorOfPublication.latestForDiscovery8a7b6bff-4e63-42ed-bb95-31a089c7d57f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero20.pdf
Size:
367.54 KB
Format:
Adobe Portable Document Format

Collections